SOFTWARE ENGINEERING
ENVIRONMENTS

Proceedings of the Symposium
held in Lahnstein, Federal Republic of Germany
June 16-20, 1980

organized by

Gesellschaft fir Mathematik

und Datenverarbeitung mbH Bonn
Institut fir Software-Technologie

ISBN: 0-444-86133-5

QMDD ___
INST. FOR INFORGAATIHK
Universitetsbibliot:eker.—‘ i Oslo

BLINDERN - osLO 3
edited by

Horst HUNKE

93] H s
(P>»C

NORTH-HOLLAND PUBLISHING COMPANY — AMSTERDAM e NEW YORK e OXFORD

gisle
Text Box
ISBN: 0-444-86133-5

Handlykken, Petter and Kristen Nygaard, Kristen and (1980), The
Delta system description language, main concepts and experience
from use (pp. 173-190).

In: H. Hiinke (ed.) Proceedings of the Symposium on Software
Engineering Environments in Lahnstein, Germany, June 16-20, 1980.
North-Holland, Amsterdam.

gisle
Text Box
Håndlykken, Petter and Kristen Nygaard, Kristen and (1980), The Delta system description language, main concepts and experience from use (pp. 173-190).
In: H. Hünke (ed.) Proceedings of the Symposium on Software Engineering Environments in Lahnstein, Germany, June 16-20, 1980. North-Holland, Amsterdam.

Software Engineering Environments
H. Hunke, editor

North-Holland Publishing Company
©cMp, 1981

THE DELTA SYSTEM DESCRIPTION LANGUAGE
MOTIVATION, MAIN CONCEPTS
AND EXPERIENCE FROM USE

Petter Handlykken and Kristen Nygaard

Norwegian Computing Center
Oslo, Norway

The paper presents a set of concepts and a language
for system description, which may be used in develop-
ment of computer-based systems. Experiences from use
of the language and direction for future work are
presented.

L INTRODUCTION.

A set of concepts and a language for system description was developed
within a resea§ch project at the Norwegian Computing Center in the
period 1973-75". The concepts and the language developed are intended
to be used for communicating on complex systems, and to express formal
descriptions of such systems.

The language, called the DELTA language, was designed for use mainly
in the development of computer-based systems in administration and
research. The language and the concepts do not include specific
principles for organising the system development process, nor do they
assume a specific method for producing software specified in the
language.

24 BACKGROUND.

The development of the language tools that led to the DELTA language,
started for two main reasons:

- a need was seen for improved language tools to be used in the
systems development process. Demands for such tools emerged from
a research project carried out for the Norwegian Iron and Metal-
workers Union in the period 1971-73 (Nygaard and Bergo, 1974).

- experience from using SIMULA as a language for programming and
systems description, showed that the language could be useful
for discussing the structure and operation of complex systems.
SIMULA was originally designed as "a language for programming
and description of discrete-event systems" (Dahl and Nygaard,
1965), (Birtwistle et. al., 1973). It was, however, obvious
that SIMULA, being a programming language, has limitations as
a description language for interpersonal communication.

*} The project was sponsored by the Royal Norwegian Council for
Scientific and Industrial Research (NTNF) and to some extent
also by the Norwegian Research Council for Science and the
Humanities (NAVF).

173

174 P. HANDLYKKEN, K. NYGAARD

For these reasons a research project on the DEvelopment of Language

Tools for Administration and Research (DELTA) was undertaken. The

main result from the project was a set of concepts and a language

fog ?ystems description (Holbazk-Hanssen, Handlykken and Nygaard,
975)

3 MOTIVATION AND PURPOSE.

The DELTA language was intended to be used in a variety of communi-
cation situations:

- Communication between system analysts and those being influenced
by their systems in various ways.

- Communication on specific systems between trade union members,
and system analysts working for trade unions.

- Communication between computer programming experts and scientists
in various fields.

- Communication between people working in interdisciplinary teams,
having different ways of conceiving the part of the world con-
sidered.

A language that is to be used for such communication has to fulfill a
number of demands:

= It should be possible to describe a wide class of systems in a
manner that is natural to those involved in the communication.
This implies that it should be possible to describe alternative
views of the part of the world considered.

7= The conceptual framework of the language should fit well into
natural language descriptions. It should be possible to integrate
descriptions in natural language with formalised descriptions.
Aspects of a system which may not be portrayed formally could
thus be included in the description.

o The concepts and the formal language should have a mathematically
sound basis, allowing detailed formal descriptions of systems
and parts of systems. Descriptions of software to be developed
should serve as a good basis for implementation.

The language is intended to be learnt thoroughly by those who are to
produce or study in detail formal descriptions in the language, mainly
system analysts. The main concepts of the language are, however,
intended to be understood by everybody taking actively part in the
development process, and also by many of those using the systems

developed.
The documents available today for users of the language are:

- An extensive definition and discussion of the DELTA language
and its concepts (in English) (Holbazk-Hanssen, Handlykken and

Nygaard, 1975).

= A brief introduction to the DELTA language (in Norwegian)
(Holbak-Hanssen, 1978).

THE DELTA SYSTEM DESCRIPTION LANGUAGE 175

= A number of reports on the use of the language in various
applications.

The present DELTA language has from the outset been considered by the
designers as a preliminary result. Based on experience gained in use,
the language will be modified and presented in a final version.

4. MAIN CONCEPTS.

The DELTA language is concerned with the description of systems. Many
definitions of the term system exist, we will use the term defined in
the following way:

A system is a part of the world,
which a person or a group of persons,
during some time and for some reason,
choose to regard as a whole
consisting of parts called components.
Each component is characterised by
selected properties and by actions which may involve itself and
other components.

An important aspect of this definition is that nothing is a system by
itself, as an inherent quality. We may regard a part of the environ-

ment as a system, but we may also choose to regard it in other ways.

The same part of the environment may be regarded as a system in many

different ways.

According to the definition a system is always a part of the physi-
cally existing world. An important class of such systems is those
which exist in our minds, as a result of our thought processes.
Systems physically materialised as states of the cells of our brains,
are called mental systems. Systems external to the human mind are
called manifest systems.

A person will consider a part of the world as a system in order to
get a better understanding of it. The part of the world considered
will be called the referent system. The understanding of the referent
system is based upon mental systems created and manipulated in the
mind of the person. The mental systems are in some sense similar to
the referent system, and we will call these mental systems mental
model systems or mental models.

The mental model system is generated by the person, who in this case
acts as a system generator.

The human mind is not able to manipulate concurrently a large number
of components of a mental model with a complex structure. For this
reason the person may decide to generate a manifest model system to
portray the properties of the referent system. The manifest model
system may consist of symbols and drawings on pieces of paper, a
database within a computer, a computer simulation model or a model on
a different scale of size (e.g. a ship model). In our use of the word,
a model is always itself a system. It is related to another system,
the referent system.

Information about a system may be communicated by means of various
techniques and tools. A classification proposed in (Bjerg and
Nielsen 1977), illustrates the variety of approaches:

176 P. HANDLYKKEN, K. NYGAARD

e Information by system exposure

1.1. Exposure to similar systems

1.2. Exposure to partial models
1.2.1. Static (Pictures, graphs)
1.2.2. Dynamic (Movies, simulators)

2 Information by system description

2.1. Static description (snapshots, dumps, invariants)
2.2. Dynamic description
2.2.1. Narratives (Traces etc.)
2.2.2. Generating descriptions used by generators
(programs, plays etc.)

A computer program is a detailed generating description, a
prescription for the behaviour of computing equipment. In the DELTA
project we have considered higher level and more comprehensive
generating descriptions, which can be related to the program
components and used as their specification. DELTA is intended as

a language for making such descriptions. This does not imply that we
regard generating descriptions as being the only, or even the most
important ones in all cases. Usually a variety of approaches are
necessary.

system

mental

pe——o
reporter fiodel

l

descrip-
tion

!

system
genera- [™
tor

!

model

language

The system reporter is observing a system, generating a mental model
and communicating this model in a description. Someone is receiving
the description and acts as a system generator producing a model of
the system.

THE DELTA SYSTEM DESCRIPTION LANGUAGE 1797

DELTA systems.

When designing complex computerized systems, people have some model
of the systems (program executions, databases etc.) more or less
clearly visualised, in their minds. Models of this kind were
precisely formulated and standardised as a basis for the development,
understanding and definition of the SIMULA (Nygaard and Dahl, 1978
and Birtwistle et.al. 1979) language.

In DELTA the concept of computer program executions has been gene-
ralised, since continuous interactions and changes of state are
taken into account. This family of model systems are called

DELTA systems. The components of a DELTA system are called objects.
The objects exist as a changing collection of rectangles containing
sequences of characters, and which are interconnected by directed
lines. The rectangles are called entities. An object may exist as
one or more entities.

A DELTA system generator is a system generator which is able to gene-
rate a DELTA system upon a substrate. A DELTA system generator may
e.g. be a person materialising the DELTA system by making drawings

on a blackboard, or by means of a computer and a display screen.

The behaviour of DELTA systems can be specified formally in a language
called the DELTA language. An abstract interpreter called the
idealized DELTA system generator gives a mathematical definition of
the generation of DELTA systems according to a formal description. As
we will see the abstract interpreter will not generally be a digital
computer. The DELTA language is thus not a programming language.

Objects.

An object in a DELTA system is represented by one or more entities in
the DELTA system.

The properties of an object are partly given by the DELTA language
definition, we call these properties structural. Partly the properties
are specified, by the user of DELTA, which means that they are defined
in the description of the system, and may only be altered by altering
the description. Finally there are the actual properties referring to
the state of the object at a specific moment of time.

The properties of an object are represented by attributes, which are
sequences of characters contained in the entity (or entities) consti-
tuting the object.

structural
attributes

specified
attributes

The specified attributes of an object may be quantities, references
or patterns.

178 P. HANDLYKKEN, K. NYGAARD

Quant;ties are data items characterising the object. A quantity is the
association of a name with a type and a value. The name is generally
specified so that it associates the quantity in” the model system with
a corresponding property of the component in the referent system.

The type indicates the way in which an amount or quality is measured,
a set of possible states which may be observed and a set of operations
possible upon these states. The value is the state actually observed
at a specific moment of time. The value may be variable or constant.

I : INTEGER = 3
R : REAL = 2.62
O : CHAR = 'F'

References are data items indicating another object in the system. A
reference is an association of a name with a qualification and a
value. The name identifies the reference and is generally specified
To associate the reference with a corresponding property of the
referent system. The qualification defines a class of objects which
may be indicated by the reference. The value is the object actually
indicated by the reference. A reference may have the value NONE i.e.

indicating no object.

¢ REF €
: REF C

<X

Patterns are definitions of categories. The categories defined by a
pattern may be:

- types of quantities,
- classes of objects enclosed within the object,
& procedures giving a rule for the execution of actions,

= functions giving a rule for defining a value of a specific
type of quantity or reference qualification.

PROCEDURE P :

BEGIN
attributes and
action
sequence

END

THE DELTA SYSTEM DESCRIPTION LANGUAGE 179

The actions associated with an object are specified as a prime task
that the object is to carry out in the period of time the system 1is
considered. The prime task may consist of a set of attributes charac-
terising the task and a sequence of actions to be performed. The prime
task is represented by a separate entity in the DELTA system.

prime
task

The objects contained in a DELTA system are ordered in a hierarchy:
The system will always have one unique object called the system object
representing the system as a whole. All other objects in the system
are enclosed by the system object or by some other object in the
system. An object is enclosed by one and the same object throughout
its lifetime, and may not exist without its enclosing object.

ENCLOSER:
-1
ENCLOSER: @ ENCLOSER: ENCLOSER:
ENCLOSER: @ ENCLOSER:

(In many systems permanent or changing aggregates of objects being

at the same hierarchical level represent natural units in a decomposi-
tion process (e.g. queues). Such aggregates should often not be
portrayed by a hierarchical encloser relationship.)

180 P. HANDLYKKEN, K. NYGAARD

Classes and subclasses of objects.

A referent system is often considered as containing a number of com-
ponents which may be described by a common description. Therefore the
notion of classes of objects is introduced in DELTA systems. A class
of objects is a set of objects having common specified properties. The
common specification is a class pattern attribute of the object enclo-
sing all the members of the class. The class pattern specifies a set
of attributes, and the actions associated with objects belonging to
the class. The actual properties may, however, vary from object to
object within the class.

It is often convenient to draw a diagram illustrating the classes of
objects existing in a DELTA system (a structure diagram). The names of
the classes are indicated.

Cl

OBJ

The diagram should not be confused with the diagrams representing
DELTA objects.

Within a class of components we often find components which we want to
distinguish from others by specified properties in addition to those
shared by all the members of the class. To model this situation the
(SIMULA 67) concept of a subclass is introduced. A subclass is a subset
of objects within a class which have common specified properties in
addition to those common to all objects in the class. A subclass is
defined by a pattern attribute in a similar manner to a class.

The execution of actions.

The actions to be executed by an object in the period of time under
consideration, are specified in its prime task. Within the prime task
there is a sequence of actions which the object should execute one by
one.

The concept of time is represented in DELTA models by a quantity named
TIME which is available everywhere in the system. The value of the
quantity portrays the moment of time considered in the referent
system. The time unit may be chosen in each case. The value of TIME
will increase continuously, from the value indicating the beginning of
the period of time considered, to the value indicating the end of the
period.

THE DELTA SYSTEM DESCRIPTION LANGUAGE 181

The DELTA notion of TIME represents the view of one observer of the
system in question. Petri Net Theory has a different time concept
and the next version of DELTA will also be related to Petri Net
concepts, see (Jensen, Kyng and Madsen, 1979).

An action may be specified in two different forms:

. by séecifying the name of a pattern defining a partial task
(procedure) .

= by specifying a basic action defined in the language.

A partial action specified by the name of a task pattern, is executed
by generating a partial task according to the pattern. The specifi-
cation of the partial task may include values which should be assigned
to attributes of the generated task. The partial task is connected to
the prime task and the action sequence of the partial task is execu-
ted. When the actions of the partial task are finished, it is dis-
carded.

The action sequence of the partial task may again be specified by
partial tasks. The execution of tasks may thus be represented by a
stack of tasks which are under execution, for each of the objects in
the system.

partial
task

prime
task

Of the basic actions defined within the language, we will here con-
sider only the basic time consuming action. This action is specified
by:

- The duration of the action, by stating a condition which has to
be fullfilled during the action.

= A set of property descriptors defining a set of relations which
have to be fullfilled during the action. The descriptors may
involve the variable TIME.

- A set of operated variables which may be assigned values in
order to fullfill the property descriptors.

In the syntax of the DELTA language such a timeconsuming action is
described by an imperative of the form:

WHILE condition LET descriptors DEFINE variables;
The underlined words are reserved words in the DELTA language.

182 P. HANDLYKKEN, K. NYGAARD

All acting objects within a system may concurrently execute time
consuming actions. The total set of descriptors of the actions being
executed at a specific moment of time is called the set of effective
descriptors. The total set of variables that may be modified by these
actions is called the set of operated variables. The system generator
of the DELTA model has (at any moment of time) to find a set of
values for the operated variables that satisfies the set of effective
descriptors. If such a set of values does not exist the specified
model is self-contradictory. If many such sets of values exist, one
of the sets is chosen indeterministically.

Example: A FURNACE heating metal may be described as executing the
action:

WHILE TEMPERATURE < MELTING_POINT
LET [TEMPERATURE = START_TEMP + F (RESOURCE .ENERGY, TIME)}

DEFINE TEMPERATURE;

The RESOURCE supplying energy may simultaneously execute an
action which determines the energy supplied:

WHILE FURNACE.TEMPERATURE < MELTING_POINT
LET {ENERGY = G (FURNACE.TEMPERATURE,TIME)}
DEFINE ENERGY;

The joint evaluation of the two property descriptors will
determine the temperature and the energy supplied to the
furnace as long as the temperature has not reached the

melting point.

At the first moment of time when the condition for an action is no
longer fullfilled, the time consuming action is ended. At this moment
there will be an instantaneous transition which terminates the action
and proceeds to the next .time consuming action specified in the action
sequence of the object. The transition is called an event.

An event may be specified by an algorithm taking the system from the
state when the preceding time consuming action is ended to the state
when the next time consuming action is started.

All events in the total DELTA model (consisting of many objects) are
assumed to take place in sequence. Two or more independent events
taking place at the same moment of time will be executed in a sequence
which is unpredictable. As a part of an event an object may send an
interrupt to another object. An interrupt is a request to execute a
specific task. The sender of an interrupt generates a task according
to a task pattern (procedure), gives values to attributes of the task
and appends the task to a list called the agenda of the object re-
ceiving the interrupt.

The receiver will compare the power priority of the interrupting task
with the resistance priority of the action it is currently executing.
If the interrupt penetrates, the execution of the current action will
be postponed and the object will start executing the interrupting

task.

As soon as the interrupting task is executed, the object will return
to the execution of the action that was postponed.

THE DELTA SYSTEM DESCRIPTION LANGUAGE 183

An object being interrupted may execute an EXIT-action before it
starts executing the interrupt requested, and it may execute a
REENTRY-action before it resumes the interrupted time consuming
action.

'"If an interrupt does not penetrate, the interrupting task will remain
on the agenda, until the object starts executing an action that is
penetrated by the interrupt.

The definition of priorities and of postponement and restart of
actions is discussed in detail in (Holbak-Hanssen, Handlykken and
Nygaard, 1975).

interrupting E;;ﬁe

task

DELTA System Descriptions.

A DELTA system may be described by a text with a specific formal
structure: a DELTA description. A DELTA description may be used by a
system generator to generate a DELTA model of the system described.

A formal DELTA description is structured as nested text blocks. The
system is described by a text block starting with the words SYSTEM
BEGIN and ending with END SYSTEM. Within this block the attributes

and actions of the system object are specified. Among the attributes
are patterns defining the objects contained in the system object.

The objects in the system are described in a similar way to the system
object. A system description will thus have the structure indicated
by the example below:

184 P. HANDLYKKEN, K. NYGAARD

SYSTEM BEGIN

CLASS A H OBJECT BEGIN
descriptions of attributes
(data items and patterns)
and prime task
END OBJECT ;

CLASS B : OBJECT BEGIN

END OBJECT ;

M : OBJECT BEGIN NB! M is a singular
..... object not belonging
END OBJECT ; to a class.

I,J,K : INTEGER ;
X : REF A ;

PRIME TASK BEGIN
attributes and
action sequence

END PRIME TASK j;

END SYSTEM ;

Conceptually the system description is a single sequence of text
starting with SYSTEM BEGIN and ending with END SYSTEM. In practice
this organisation of the description will seldom be used. The descrip-
tion will be organised in several layers of detail where the first
layer gives an overview of the attributes of the system object. The
layer will have references to detail layers where the attributes are
given a more comprehensive description. The organisation of these
layers may be chosen according to a number of criteria:

3 following the hierarchy of enclosing/enclosed objects.

- following the class/subclass hierarchy.

= describing components and properties which are closely inter-
related in the same part of the description.

- following the detailing of actions into partial actions.

The actual choice must be made according to what seems to best full-
fill the purpose of the description. However, it should always be
possible to reorganise the description into a single sequence by
replacing each reference to a detail by the corresponding description.

THE DELTA SYSTEM DESCRIPTION LANGUAGE 185

5 SOME EXAMPLES OF USE OF THE LANGUAGE.

Since the DELTA language was defined, it has been used for a number
of applications, mainly at universities and at the Norwegian
Computing Center. The applications have aimed at exploring strengths
and weaknesses of the language. No efforts have till now been made

to encourage wide spread use of DELTA. The next version of DELTA will,
according to present plans, be intended to be a practical tool
supported by software. '

The applications fall in three main categories:
= descriptions for analysis and design of worktasks within an
organisation.

- communication within an interdisciplinary group of scientists,
studying the same phenomena.

- descriptions of formal models to be implemented on a computer.
The language has been taught to students in informatics at the uni~

versities at Aarhus and Oslo. Reactions from the students have been
valuable for the further development of the language.

Description of work tasks within an organisation.

Use of the DELTA language for these purposes is described in (H&nd-
lykken, 1977), (Eriksen, 1977) and (Bjerg & Nielsen, 1977).

For such purposes the descriptions are to a large extent formed in
natural language. The DELTA concepts are used in the descriptions in
the following manner:

= identification and naming of components and of classes and sub-
classes of components within the system.

= identification and naming of properties of each component. The
properties may be data characterising the component or patterns
for work tasks carried out in the organisation.

It is important that identification and naming is if possible done

in accordance with concepts already in use within the organisation. A
consistent identification and naming of components and properties
enriches the natural language and makes it possible to discuss the
system in question more precisely.

The level of detail and precision used in such a description will vary
considerably. Within an organisation there are a number of tasks,
often important, which are not repetitive and which are planned and
executed as need or idea arises. E.g. writing a memo to management on
a specific problem. A detail description of such tasks in advance is
not possible. It might be possible to identify the kind of task, its
goals and some of the aids available for doing it, but often not even
that is possible.

For other tasks which are repetitive, it might not be possible or
desirable to describe a uniform way in which the task is or should be
executed. The detailing in the description may be sufficient when it
is assured that it is possible to execute the task satisfactorily.

There are also, however, repetitive work tasks where it is crucial

186 P. HANDLYKKEN, K. NYGAARD

thgt Fhe task is executed in a specific manner. Very detailed des-
quptlons of these tasks may be necessary. Tasks supplying data to an
important database will often tend to be of this kind.

The descriptions of work tasks made during the development of an
information system will not only contain information processing
aspects of the work. For meaningful discussion and evaluation of
proposals other aspects important to the work tasks and jobs must be
included in the description. Such descriptions are used for communi-
cating on an existing or proposed system, and in material like hand-
books and manuals used in a system.

The layout of the descriptions will then be organised in named chap-
ters or paragraphs, ordered according to the alternatives suggested

for DELTA descriptions, supplemented by pictures, drawings and dia-

grams.

Example:

We may describe a system of OPERATORS working at TERMINALS
in informal DELTA-language in the following manner:

Common description for all OPERATORS:

The PRIME TASK of an operator is to do WORKSESSIONS at a
TERMINAL. Each WORKSESSION will be interleaved by a period of
other kind of work.

An operator is currently working at a TERMINAL called his
WORKSTATION.

A WORKSESSION consists of entering data on a TERMINAL from a
pile of documents by the following sequence of actions:

- Choose one of the TERMINALS not currently in use as
WORKSTATION.

- Make the WORKSTATION ready for use and go through a
login procedure.

- Repeat these actions until the data from the documents are
entered:

. type a transaction on the WORKSTATIONs KEYBOARD
press the transmit-key on the WORKSTATIONs KEYBOARD
wait for response message
check the response message.

- Go through the logout procedure and leave the WORKSTATION.

Common description for all TERMINALS:

A terminal has a KEYBOARD and a DISPLAY unit. It is connected
to a central computer which it may send messages to and
receive messages from.

The OPERATOR currently using the TERMINAL is called its USER.

Interdisciplinary communication.

The language has been used for the purpose of providing a common
framework for communication within an interdisciplinary group of
scientists. (Mgller-Pedersen, 1977). The group consisted of hydro-
logists, biologists, engineers and chemists cooperating on the ana-

lysis of a lake.

THE DELTA SYSTEM DESCRIPTION LANGUAGE 187

The lake was decomposed into singular components and classes of
components and data items and dynamic properties were assigned to the
components. This formed a basis for working out a common description,
and for structuring the discussion between the groups of scientists.

The language gives a large degree of freedom with respect to the kinds
of models that may be described, and the level of detail used in the
model. This implies that the language itself to little extent forces
the scientists to use a particular kind of model. However, it also
means that the actual choice of model and the way the language is used
in such a group is important. According to Mgller-Pedersen the most
important benefit in using the language was to define and describe a
common model of the lake as a basis for communication between the
members of the group. For detailed discussions within each group the
concepts and notations of the relevant discipline were still used.

Description of systems implemented on a computer.

The language has been used in the system development process to
describe the models to be implemented on a computer (Handlykken,
1977) . A database containing information on the organisation and
personnel of a large Norwegian enterprise was described and imple-
mented using DELTA as a description tool.

In this case a detailed formalisation of the model to be implemepted
was necessary. The database was considered as a DELTA-model and it
was described in DELTA language to people who were to use it in their
work.

The concepts of objects and classes and subclasses of objects were
used. Nesting of objects has similarities to hierarchical databases,
however, relations between objects in general were described by refe-
rences. Incorporated in the description were specifications of the
main events taking place in the database. A description of important
aspects of the dynamics of the database was thus included in the
database description.

The TIME-concept of DELTA models was used, and a variable defining the
moment of time modelled by the database was introduced. Information
relating to moments before that time was considered historic, infor-
mation relating to a time beyond that time was considered future. As
the value of TIME increases there are automatic updates in order to
make the database portray the new moment of time.

The description of the database was used for discussing which pro-
perties should be included in the model and how the model could be
used and supported by worktasks in the organisation.

The database was itself described as a component within the organi-
sation in which it is used. The communication between the organisa-
tion and the database was described by the interrupt concept. A
transaction to the computer system was described as an interrupt i.e.
a request to execute a specific task with a specified set of attribute
values.

The database was implemented using COBOL, supplemented by a transac-
tion handling system. The conversion from the DELTA description to a
COBOL description of the model implied a number of decisions: access
methods, storage organisation, representation of data and detailed

188 P. HANDLYKKEN, K. NYGAARD

organisation of the programs had to be chosen. The conversion was
therefore by no means automatic, however, few changes in the DELTA
description was necessary to implement the system.

Simulation may be a useful tool for evaluating the design of a system.
For complex real-time system it may be the main tool available. Since
DELTA is based on SIMULA, which is a simulation language, a DELTA
description is a good starting point for simulations. We have no
experiences with this in DELTA. In SIMULA there are, however, examples
that a real-time program in SIMULA may be executed in a simulated
real-time environment without making changes to the program (Belsnes,
Lgvdal, 1977).

6. EXPERIENCES WITH DELTA.

The experiences from using the language so far are briefly summed up
in the following paragraphs.

The concepts of the language are well suited for use in natural
language and for defining concepts to be used in natural language
descriptions. The integration of formal descriptions and informal
description comes easily.

No new users knowledge of how to apply a formal language in systems
development seems to be very important. Increased formalisation
increases the precision and compactness of the description, but it
also means that the description will concentrate on formalisable
aspects of the system considered. Too much formalisation reduces the
readability of the description, especially to readers not familiar
with formal languages. Too little formalisation may give specifi-
cations which are ambiguous. The degree to which a description should
be formalized will often be a matter of judgement.

The language is suited for describing formal models to be implemented
on a computer. There are, however, a number of improvements to be
made:

= The data types and control structures which are inherited from
SIMULA/ALGOL should be improved.

= A notation for relating different views of one generated model
system should be introduced.

= Concepts which in some form introduces modification of the
attribute structure or introduction of new attributes during the
generation of a DELTA system, ought to be included in the language.

= Some changes in the semantics of the language as proposed by
(Jensen, Kyng and Madsen, 1979) should be included.

DELTA descriptions and the DELTA systems have so far been generated
with little support from the computer. A standard representation on a
data screen and a standard dialogue with a DELTA description and a
DELTA model by means of a data screen should be defined. Use of a
graphical data screen will be highly desirable for this purpose. Work
carried out at the XEROX labs in Palo Alto gives ideas to how such a
dialogue could be defined (Ellis and Nuff, 1979).

THE DELTA SYSTEM DESCRIPTION LANGUAGE 189

There are no tools specifically designed for realizing a DELTA model on
a computer. The programming language, BETA, is, however, intended to
become a programming language meeting this need. At the moment an
existing programming language has to be used. Using a programming
language which is not close to DELTA introduces a distance between the
specification and the programs which is clearly a drawback.

R THE BETA LANGUAGE AND FUTURE WORK.

BETA started as, and still is a research project with purpose of
contributing to the development of concepts and tools in programming
languages. BETA will, however, also be implemented. The language is
intended for a wide range of applications, like e.g. the ADA language
(the two languages are, however, very different in structure).

BETA is very much inspired by DELTA in its general system concepts,
and will probably in turn influence many aspects of the next DELTA
version.

Our goal is to bring DELTA and BETA very close to each other. Then
DELTA could be used for the overall system development and BETA for
the programming of the computer-implemented subsystems, using the
DELTA descriptions of these subsystems as specifications.

Such a correspondence also will make it possible for DELTA and BETA to
share tools supporting the system development - at this conference
called software engineering environment.

The BETA programming language is being developed by Bent Bruun Kris-
tensen, Alborg, Denmark, Ole Lehrmann Madsen, Arhus, Denmark and
Birger Mgller-Pedersen and Kristen Nygaard, NCC, Oslo, Norway. Dag
Belsnes, NCC, recently joined the BETA team. The work till date is
reported in a seriés of Working Notes, the most recent are (Kristensen
et. al., 1979) and (Kristensen et. al., 1980).

Finally, it should be remarked that our work on the design and use
of DELTA should be regarded as a component of the wider task of
contributing to the understanding of and methods for development of
information systems (Nygaard and Handlykken, 1980).

REFERENCES .

Birtwistle, G.M. et al. 1973: "SIMULA BEGIN".
Studentlitteratur, Lund and Auerbach Publ. Inc., Philadelphia,
Pa.

Bjerg, L. and Nielsen, L.V. 1977: "EDB-systemer indenfor avisproduk-
sjon. Beskrivelse af systemerne og vurdering af beskrivelses-
metoder ud fra de grafiske arbeideres synspunkt". ("Computer
Systems in Newspapers. Description of Systems and Evaluation of
Description Methods - from the Typographers "Point of View".)
DAIMI, University of Aarhus, Aarhus, 1977.

Dahl, 0.-J. and Nygaard, K. 1965: "SIMULA - a Language for Programming
and Description of Discrete Event Systems". Norwegian Computing
Center, Oslo, 1965.

Ellis, C.A. and Nutt, G.J. 1979: "Computer Science and Office Infor-
mation Systems".
XEROX, Palo Alto Research Center, June 1979.

190 P. HANDLYKKEN, K. NYGAARD

EBriksen, A.M. 1977: "Problemer i systemudvikling, specielt vedrgrende

sprogformer i systembeskrivelser". ("Problems in System Develop-
ment, Particularly Relating to Language Used in System Descrip-
tioen”.)

DAIMI, University of Aarhus, Aarhus, 1977.

Holbazk-Hanssen, E., Handlykken, P. and Nygaard, K. 1975:
"System Description and the DELTA Language".
Publ. no. 523, Norwegian Computing Center, Oslo, 1975.

Holbzk-Hanssen, E. 1978: "En kort innfgring i DELTA-sprdket og DELTA-
strukturerte systemer". ("A Brief Introduction to the DELTA
Language and DELTA Structural Systems".)

Publ. no. 599, Norwegian Computing Center, Oslo, 1978.

Handlykken, P. 1977: "Rapport fra et systemutviklingsprosjekt der
resultater fra DELTA-prosjektet er brukt i praksis". ("Report
from a System Development Project in which Results from the DELTA
Project is Used".)

Publ. no. 558, Norwegian Computing Center, Oslo, 1977.

Jensen, K., Kyng, M. and Madsen, O.L. 1979: "DELTA Semantics
Defined by Petri Nets".
DAIMI, University of Aarhus, Aarhus, 1979.

Kristensen et al., 1979: "BETA Language Proposal as of August 1979".
Internal Report IR-11
DAIMI, Aarhus University, Aarhus, 1979.

Kristensen et al., 1980: "An Introduction to the BETA Programming
Language (As of August 1979)".
Internal Report IR-20
DAIMI, Aarhus University, Aarhus, 1980.

Lgvdal, E. and Belsnes, D. 1977: "Use of Simulation Techniques
in Actual Network Implementation".
The EIN Symposium on Simulation and Modelling of Data Networks,

Oslo; 1977.

Mpller-Pedersen, B. 1977: "Communicating Concepts in an Interdisci-
plinary Project. Four Models of a Lake Described in the DELTA
Language".

DAIMI, University of Aarhus, Aarhus, 1977.

Nygaard, K. and Bergo, O.T. 1974: "Planlegging, styring og data-
i ,behandling. Grunnbok for fagbevegelsen. Del II". ("Planning,
"Control and Data Processing. Basic Reader for Trade Unions.
PAEE TT.")
Tiden Norsk Forlag, Oslo, 1974.

Nygaard, K. 1976: "DELTA-prosjektet og dets tilknytning til
problemene i systemutvikling". ("The DELTA Project and its
Relation to Problems in System Development".)

Publ. no. 539. Norwegian Computing Center, Oslo,.1976.

Nygaard, K. and Dahl, 0.-J. 1978: "The Development of the SIMULA
Languages." Paper presented at the ACM History of Programming
Languages Conference, Los Angeles, 1-3 June 1978.

Nygaard, K. and H&ndlykken, P. 1980: "The System Development Process".

Paper presented at the GMD Symposium on Software Engineering

Environments, Lahnstein, Germany, 16-20 June 1980.

