
The Development of the SIMULA

Languages

by

Kristen Nygaard
Norwegian Computing Center

and University of Oslo

and

Ole-Johan Dahl
University of Oslo

Preface.

The organizers of this conference have told us
that we should write at least 25 pages of
manuscript, but that we may produce as many
pages more as we wanted. Perhaps they did not
envisage the possible consequences, but we
have taken their words at face value.

This paper has implied a vast amount of work and
archeological activities. We are grateful to
SIGPLAN for defining a task to which resources
had to be allocated by our institutions and
which forced us to write down an account
of our work from 1961 to 1971. While we are
writing this preface, those years are very
much alive to us. We realize that we lived
through this period in a state of semimadness,
a combination of very hard work, frustration,
and euphoria.

The observations which have impressed us most are:

that the results of the SIMULA effort
were completely dependent upon the joint
beliefs, work, ideas and advice
of a very large group of people, and

that at many stages the whole effort
continued just because of lucky
circumstances.

Have we told the truth about SIMULA's history?
Yes, to our best knowledge, we have. But
have we told the whole truth? No, we have not.

SIMULA's history is intertwined with that of
the Norwegian Computing Center. And the
emergence of NCC in the sixties is an important
part of the history of informatics in Norway.
It is too early to tell that history, but
our professional society is now starting to
at least collect all the stories remembered.
In this paper .we are deliberately vague when
we want to avoid accusations against persons
and institutions, and yet indicate problematic
si tua tions .

In our time travel during the last few months,

@1978 Association for Computing Machinery. Inc. 245

many of those involved have put their memories
at our disposal. We want to express our
gratitude. In the actual writing we have been
assisted by Birger M~ller Pedersen and
Paul Wynn of the NCC, and the typing has been
very competently done by Lise Tschudi assisted
by Eileen Schreiner.

1. Background.

The development of the SIMULA I and SIMULA 67
languages was carried out at the Norwegian
Computing center (NCC). The early background
for the development is, however, our work
at the Norwegian Defence Research Establishement
(NDRE) in the fifties.

KN started his conscript service at the NDRE in
1948 as assistant to Jan V. Garwick - the father
of computer science in Norway. Their first
main task was to carry out resonance absorption
calculations related to the construction of
Norway's first nuclear reactor. After extensive
work had been invested in a traditional numerical
approach, Monte Carlo simulation methods (by
"hand") were successfully introduced instead
in 1949-50. KN headed the "computing office"
until mid 1952, and then became a full time
operational research worker.

OJD joined the NDRE in 1952, also as a soldier
doing his conscri~t service. Garwick and his
assistants had, since 1949, followed the
development of electronic computers. A BULL
punched card calculator had, in 1951-3, been
extended at the NDRE into a card programmed
electro-mechanical computer. In 1954 it was
decided that NDRE should acquire a Ferranti
MERCURY computer, then at the design and
construction stage, and in the following
years the NDRE milieu developed basic software
which was fairly advanced for its time.

In the late fifties, the NDRE milieu started
work in language design, in which Garwick

ACM SIGPLAN Notices. Vol. 13. No. 8. August 1978

ancl OJD were particularly active.

FrClm 1956 on the operational research (OR)
act~ivities expanded rapidly. In the large scale
OR jobs, simulation once more turned out to
be the only feasible tool for analysis of
sufficiently realistic models. Also, it became
evident that no useful and consistent set of
concepts existed in terms of which the structure
and interaction in these complex systems could be
understood and described. Since the task of writing
simulation programs for the MERCURY computer became
important, the lack of tools for this task was a
serious obstacle.

In May 1960 KN left the NDRE to build up the NCC
as a research institute in computer science,
operational research and related fields. Many
of the civilian tasks turned out to present
the same kind of methodological problems: the
nec:essity of using simulation, the need of
concepts and a language for system description,
lack of tools for generating simulation programs.
This experience was the direct stimulus for the
ideas which in 1961 initiated the SIMULA
development.

Nce is a semi-governmental research institute,
established in 1958, working within informatics,
operational research, numerical analysis and
applied statistics. The task of the institute
basically is to assist in disseminating new
methods and tools in these fields to the
user environment in Norway. In fulfilling
this task, NCC is supposed to take on
practical jobs and to develop new knowledge
through pure and applied research.

NCC is supervised by the Royal Norwegian Council
for Scientific and Industrial Research. The
institute is funded by research contracts with
customers and contributions from the Research
Council. Today (1978) approx. 60% of NCC's
income stems from customers, 40% from the
Research Council. Of this 40%, 75% is grants
to the institute's activities in general, and
25'. (10% of the total) earmarked contributions
to specified research projects. The staff
amounts to 76 of which 55 are research
workers. The customers of NCC come from
private commerce and industry, public agencies,
other research institutions and (since 1971)
trade unions. NCC has played an important part
in the Norwegian and later Scandinavian
development of workers' influence on planning,
control and data processing systems.

2. SIMULA 1.

2.1 Early History.

The ideas for a language which could serve the dual
purpose of system description and simulation
programming originated at the NCC in the spring
of 1961. The first written reference to SIMULA
is found in a letter dated January 5, 1962 from
KN to the French operational research specialist
Charles Salzmann, (Nygaard 1962a):

246

"The status of the Simulation Language (Monte
Carlo Compiler) is that I have rather clear
ideas on how to describe queueing systems, and
have developed concepts which I feel allow a
reasonably easy description of large classes of
situations. I believe that these results have
some interest even isolated from the compiler,
since the presently used ways of describing
such systems are not very satisfactory."

"I hope that later developments, for which I have
a number of ideas, will include e.g. stochastic
inventory situations amongst the situations which
may be described by the language.

The work on the compiler could not start before
the language was fairly well developed, but this
stage seems now to have been reached. The expert
programmer who is interested in this part of
the job will meet me tomorrow. He has been
rather optimistic during our previous meetings."

The naive optimism evidenced by this quotation
was perhaps as asset. Had we at that time known
the magnitude of the efforts ahead, we had at
least had a more difficult task in getting the
necessary resources for the project.

The "expert programmer" was of course OJD who
had been contacted by KN in December 1961 when
the first set of apparently powerful ideas
had appeared.

Then it became evident that the "SIMULA project"
could only be carried out successfully if it
combined:

experience in operational research,
particularly related to large, complex
systems of many different kinds, with

experience and knowledge in computer
programming language design and
implementation.

OJD immediately got interested and participated
in a long series of discussions with KN during
the spring of 1962. In May we felt that we
had a language proposal which we could present
to other people. At that time OJD had become
involved to such an extent that he decided to
leave NDRE for NCC. He started his work at
the NCC in March 1963, after having finished
his current project at NDRE (implementing a home
made ALGOL-like programming language).

In May 1962 UNIVAC launched a big campaign for
their new computers, the famous UNIVAC 1107
and the (now forgotten) UNIVAC Ill. KN was
invited to join the "UNIVAC Executive
Tour" to the US, and accepted with the intention
of reversing the sales mission by selling
SIMULA to UNIVAC. To the surprise of all
involved, both parties succeeded: The NCC
got a UNIVAC 1107 in August 1963. UNIVAC and
NCC entered a software contract, and NCC
had completed the SIMULA I computer in January,
1965. The politics surrounding these events
was complex, often tough, and gave some of those
involved wounds which were difficult t.o heal.

There was no initial enthusiasm for SIMULA in
Nee's environment, and we were told that:

1.

2.

3.

There would be no use for such a language
as SIMULA.

There would be use, but it had been done
before.

Our ideas were not good enough, and we lacked
in general the competence needed to embark
upon such a project, which for these reasons
never would be completed.

4. Work of this nature should be done in count
ries with large resources, and not in small
and unimportant countries like Norway.

We had, however, the support of the board of NCC,
and SIMULA was linked to the acquisition of
NCe's UNIVAC 1107 computer.

2.2 ~he Main Development Stages.

The SIMULA I language went through four main stages:

1. The summer of 1961 - the autumn of 1962:
The initial ideas based upon a mathematic
ally formulated "discrete event network"
concept and a programming language
reasoning which had no specific implementation
situation in mind. The main references are
a working document (Nygaard 1962 b, in
Norwegian) and the SIMULA presentation
at the IFIP World Congress in Munich,
August 1962, (Nygaard 1963 a).

2. The autumn of 1962 - September 1963:

3.

4.

Development of the early approach, increased
flexibilty introduced by the possibilities
of ALGOL 60, at the same time restricted
by the assumption of SIMULA being implemented
by a preprocessor to ALGOL 60 combined
with a "procedure package". The main
references are (Nygaard, 1963d) (Dahl and
Nygard 1963), the latter being the language
definition of the SIMULA I software
agreement between UNIVAC and NCC
(Agreement 1963).

september 1963 - March 1964: Decision to
implement SIMULA I through a modification
and extension of UNIVAC's ALGOL 60 compiler,
based upon a new storage management
scheme developed by OJD. The introduction
in February 1964 of the "process" concept,
utilizing the new possibilities available.
The main reference is (Dahl and Nygaard
1964a) .

March 1964 - December 1964: The implementation
of the SIMULA I compiler. Minor language
modifications and extensions based upon
implementation experience and programming
test cases. The main reference to the
resulting SIMULA I language is (Dahl and
Nygaard 1965) •

In this section we will describe the SIMULA I
of stage 2 and its transition into the SIMULA I
of stage 3. The reasoning which motivated this
transition and thus the final SIMULA I language

247

will be presented in section 2.3.

using the July 1963 paper, (Nygaard 1963d), as
a platform, we find that the basic concepts
of SIMULA at that time were:

1.

2.

3.

A system, consisting of a finite and fixed
number of active components named stations,
and a finite, but possibly variable
number of passive components named
customers.

A station consisting of two parts: a
queue part and a service part. Actions
associated with the service part, named
the station's operating rule, were
described by a sequence of ALGOL (or
ALGOL-like) statements.

A customer with no operating rule, but
possibly a finite number of variables,
named characteristics.

4. A real, continuous variable called time
and a function position, defined for all
customers and all values of time.

5. The possible sequence of positions for
a given customer implied that a customer
was generated by a service part of a
station, transferred to the queue part of
another (or the same) station, then to
the service part of that station etc.,
until it disappeared by not being
transferred to another queue part by the
service part of some station.

Since this structure may be regarded as
a network, and since the events (actions)
of the stations' service parts were regarded
as instantaneous and occurring at
discrete points of time, this class of
systems was named discrete event networks.

It should be noted that at this stage:

1. Each individual station had to be described
by a declaration:

2.

3 .

station <identifier>;<statement>

the <statement> being single, compound
or a block.

Customers were declared collectively by

customer <customer list>

where the <customer list>-elements
had the format

<identifier> «list of characteristics»
[<integer expression>]

the <integer expression> indicating the
upper limit to the number of this type
of customer being present.

A system was declared by

system <identifier> := <station list>

where the elements of the <station list>
were identifiers of stations.

Th'" best way to give the reader a feeling for
the language at this stage is to present some
fragments of an example - an "airport departure"
model.

system Airport Departure:= arrivals, counter,
fee' collector, control, lobby;

customer passenger (fee paid) [500] ; Boalean
fee paid;

station counter;
begin accept (passenger) select:

(first) if none: (exit);
hold (normal(2,O.2));
route (passenger) to:
(if fee paid then control else fee collector)
end;

station fee collector, etc.

The language elements "accept-select-if none",
"hold", and "route-to" describe the nodes of the
ne·twork and the interconnections. The syntax
is that of ALGOL procedure calls, but according
to (Dahl and Nygaard 1963) "these are not
procedures in the strict ALGOL sense ..•. Various
details must be added behind the scenes by a
preprocessor". For instance, the "hold"
statement represented a time delay in the operation
of the station, which implied that control
would have to leave the station and return to
it at a later time. Each new life cycle of a
station would be started automatically at the
appropriate times.

At the next stage, March 1964, (Dahl and Nygaard
1964a), the simple network idea had been
replaced by the more powerful concept of models
consisting of interacting processes operating
in "quasi-parallel" (see section 2.3.2). The
processes were declared collectively by
"activity" declarations. At this stage the
preprocessor idea had been abandoned, the
language would be implemented by extending
the ALGOL compiler and changing parts of
the run time system, (Dahl 1963, Dahl 1964).

Process queues were now represented by explicitly
declared ordered "sets". They were manipulated
by "wait" and "include" statements and a special
extract-select construct which also made
quantities declared local to the selected
process, the "attributes", accessible from the
outside. Thereby processes were also data
carriers, like the "customer" objects one year
earlier.

SIMULA begin comment airport departure;
set q counter, q fee, q control, lobby (passenger);
--- counter office (clerk); .•••
activity passenger; Boolean fee paid;

begin fee paid:- random(0,1)<0.5; •••. ;
---w-ait (q counter) end;

activity clerk;
begin
counter: extract passenger

select first (q counter) do
begin :hold (normal (2,0.3));
-----if fee paid then

248

end

begin inClude (passenger) into:
---- (q control) ;

incite (control office) end
else
begin include (passenger) into: (q fee);
--- incite (fee office) end;

if none wait (counter office) ;
goto counter

end;

end of SIMULA;

Curiously enough the wait/incite operator pair
makes our set concept of 1964 act as a waiting
mechanism, not unlike the concept of condition
variables introduced by Hoare for process
synchronization in monitors, (Hoare 1974).
(Hoare never saw our paper). Our operator pair
is analogous to Hoare's wait/signal.

At this stage all the major features of SIMULA I
were present. Some important details were
adjusted, however, along with the language
implementation. In order to increase flexibility,
sets were allowed to contain processes of
different kinds, and process pointers were
introduced as explicit language elements.
Consequently the mechanism for accessing the
attributes of a process had to be remodelled.

inspect <process reference>
when passenger do
when staff do -
otherwise '"

The "incite" operator was replaced by the more
generally applicable construct

activate <process reference>

The SIMULA I compiler was finished at the end
of 1964, and the language definition user's
manual appeared in May the following year
(Dahl and Nygaard 1965) •

2.3 The Development Process.

2.3.1 System Description.

From the very outset SIMULA was regarded as a
system description language, as evidenced by
the title of the IFIP 1962 Munich paper,
"SIMULA - an extension of ALGOL to the
description of discrete event networks",
(Nygaard 1963a). The design objectives were
stated in (Nygaard 1963d, pp 2-3) .

"1. The language should be built around a
general mathematical structure with
few basic concepts. This structure
should furnish the operations research
worker with a standardized approach in
his description so that he can easily
define and describe the various components
of the system in terms of these concepts.

2. It should be unifying, pointing out similarities 1.
and differences between various kinds of

In 1963 SIMULA was related to "discrete
event network systems". In 1965 the
term "network" had disappeared. network systems.

3. It should be directing, and force the 2. In 1963 it was stated that SIMULA "should
be built around a general mathematical
structure with few basic concepts".

operations research worker to consider
all aspects of the network.

4. It should be general and allow the description
of very wide classes of network systems and
other systems which may be analyzed by
simulation, and should for this purpose
contain a general algebraic and dynamic
language, as for example ALGOL and FORTRAN.

5.

6.

It should be easy to read and to print, and
should be suitable for communication
between scientists studying networks.

It should be problem-oriented and not
computer-oriented, even if this implies
an appreciable increase in the amount of
work which has to be done by the computer."

Two years later, in May 1965, the design
objectives were restated in the SIMULA I Manual
(Dahl and Nygaard 1965, pp. 4-5):

"1. Since simulation is the method of analysis
most commonly to be used for the systems
in which we are interested, SIMULA is a
dynamic language:

It is designed to describe sequences of
actions, not permanent relationships.
The range of variation in decision rules
and interactions between components
of systems is so wide that it is
necessary to let the language contain
a general algorithmic language. An
important reason why ALGOL has been
chosen is that its block structure is
similar to what was needed in SIMULA.

2. SIMULA should be built around a few basic
concepts, selected to provide the research
worker with a standardized approach to a
very wide class of problems and to make
it easy to identify the various components
of the system.

3. Attempts have been made to make the language
unifying - pointing out similarities and
differences between systems, and directing -
forcing the research worker to consider all
relevant aspects of the systems. Efforts
have also been made to make SIMULA descriptions
easy to read and print and hence a useful
tool for communication.

4. Taking the above objectives into account,
SIMULA descriptions (supplemented by the
necessary input, output and data analysis
statements) should without any rewriting
be able to produce simulation programs
for electronic computers through compilers."

Comparing the two versions of the design objectives,
it is seen that the three main differences are:

249

3.

Also it was said in (Nygaard 1963d) that "our
present idea is that the first SIMULA
compiler should be ALGOL-based, and ALGOL
is used here. A later version may be
FORTRAN-based, using the same basic concepts."
In 1965 SIMULA I S nature as a "dynamic
language" (i.e. algorithmic language) and
its relationship to the block structured
programming language ALGOL was strongly
emphasized.

In 1963 it was said that SIMULA "should be
problem-oriented and not computer-oriented,
even if this implies an appreciable increase
in the amount of work which has to be done
by the computer". In 1965 SIMULA I S problem
orientation was still stressed, but its
computer orientation was also underlined.

Let us examine the reasons for each of these
modifications of the design objectives.

When we started the development of SIMULA, we
felt that we had a rather wide range of system
examples available to test our ideas against.
The situation: was, however, that all these
systems could be conceived as consisting
of components of two distinct kinds: permanently
present active components, and a variable
number of transient passive components moving
between and being acted upon by the active ones.
Such a system could in a natural way be regarded
as a network.

First we observed that e.g. the airport departure
system could be considered from a "dual" point
of view: It could be described by active passengers,
grabbing and holding the passive counter clerks,
fee collectors etc. Then we realized that it
was also possible to adopt an "in-between" or
"balanced" point of view: describing the
passengers (customers) as active in moving
from station to station, passive in their
interaction with the service parts of stations.
These observations seemed to apply to a large
number of situations. Finally, in our search
for still wider classes of systems to be used
to test our concepts, we found important examples
of systems which we felt could not naturally
be regarded as "networks" in the sense we had
used the term (e.g. the "epidemic system"
described in (Dahl and Nygaard 1966)).

The result of this development was the abandonment
of the "network" concept and the introduction of
processes as the basic, unifying concept.

The second modification of the design objectives
was related to the first. We no logner regarded
a system as described by a "general mathematical
structure" and instead understood it as a variable
collection of interacting processes - each
process being present in the program execution,

the simulation, as an ALGOL stack.

From then on the program execution, existing
as a dynamic system within the computer's store,
became prominent in our discussions. Graphical
representations of simplified (but structurally
identical) versions of the program executions
were used as models of the systems described
by the language. More and more our reasoning
on language properties was related to desirable
features of these model systems. (The textbook
SIl1ULA BEGIN is a later example of the systematic
pedagogical use of such graphical models,
(Birtwistle et al 1973)).

It turned out that this approach was essential in
the teaching of SIMULA I, and it was an important
mode of thinking when SIMULA 67 was developed
and later taught. Instead of deriving language
constructs from discussions of the described
systems combined with implementation considerations,
we developed model system properties suitable
for portraying discrete event systems, considered
the implementation possibilities and then settled
the language constructs.

An obvious consequence was that we abandoned
the idea of a FORTAN-based version of SIMULA I
(see section 2.5). ALGOL's stack structure had,
in its generalized form, become an essential
feature of SIMULA I and a main reason for its
success.

Finally, let us consider the modification
of the 1963 design objective, that SIMULA "should
be problem-oriented and not computer-oriented,
even if this implies an appreciable increase
in the amount of work which has to be done by
the computer".

This design objective caused much discussion
and disagreement between us'. But, as the language
gradually developed, we felt that the expected
conflict between problem orientation and
computer orientation dimished and to some extent
disappeared. Instead we often discovered that,
with the language approach chosen, good system
description capabilities seemed to result in
a more simple and logical implementation.

Another reason for the modification was that we
realized that the success of SIMULA would,
regardless of our insistence on the importance
of problem orientation, to a large extent
depend upon its compile and run time efficiency
as a programming language.

2.3.2 storage Allocation.

The initial plan was that the simulation facility
should be implemented as a procedure package
and a simple preprocessor on top of ALGOL 60.
One idea that looked promising at the time came
from the observation that ALGOL, by its recursive
block mechanism, did cater for multiple
occurrences of user defined data structures
rather like the "customers" that would go from
one "station" to the next in our simulation
models'.

Also the station descriptions had block format.

250

It turned out, however, that the block
structure of ALGOL was not very helpful, in
fact the preprocessor would have to fight
against it by breaking up the blocks, making
local variables non-local, etc. There was no
hope of integrating special purpose operations
like "hold (time interval)" completely into
the language, since it implied a kind of "parallel"
processing foreign to ALGOL and conflicting with
ALGOL's strict dynamiC stack regime of procedure
calls and storage allocation.

During the spring of 1963 we became more a ,.1. more
convinced that the project was on a wrong track,
and started toying with the idea of making
nontrivial changes to ALGOL by breaking with the
stack regime. Since that would have grave
consequences for the storage management of the
ALGOL run time system, we had to dig from that end.

During the summer and autumn of 1963 a storage
allocation package was designed, based on a
two-dimensional free area list (Dahl 1963). The
inner lists contained areas of the same size,
which we felt would be numerous in typical steady
state situations; the outer list contained the
inner ones ordered according to area size. Each
area had a "used" bit in its first and last
words to facilitate the recombination of
neighbouring free areas. Thus the system
had stack allocation as a special case, and
could at the same time utilize the entire
non-contiguous store of our computer.

With this solution to the storage allocation
problem the search space for useful dynamiC
structures was drastically increased, and in
Febuary 1964 the SIMULA process concept was born,
ranging from pure data structures to quasi-parallel
ALGOL programs.

Quasi-parallel execution of processes implied
that control would switch from one process
to another as the result of special sequencing
statements such as "hold". Each temporarily
inactive process had a "reactivation point"
(represented by a system variable local to the
process) which identified the program point
where control should resume operations next
time it entered the process. With the new
storage allocation package quasi-parallel sequencing
statements could be allowed at arbitrary program
points, e.g. inside procedures called by the
processes, since their data stacks could grow
and shrink independently (Dahl 1964). Furthermore
processes could be created and destroyed in
arbitrary order.

2.3.3 Security and Consistency.

During the summer of 1963 Bernard Hausner, then
working at RAND Corporation, Santa Monica, us,
was employed by the NCC (see section 2.5).
Hausner was one of the fathers of SIMSCRIPT
(Markowitz, Hausner, Karr 1963), and through him

we got to know the SIMSCRIPT language and its
implementation rather well. This was our first
encounter with the pointer concept in a high
level language. To some extent, however,
our reaction to SIMSCRIPT can best be described
as that of a "cultural clash". It helped

to make an important design goal conscious
and explicit.

Our language had to provide programming "security"
to the same extent as ALOGL 60 itself: Any erroneous
program must either be rejected by the compiler
(preferably), or by run time checks (if unavoidable) ,
or its behaviour must be understandable by reasoning
based entirely on the language semantics,
independent of its implementation.

A main aspect of security was to achieve compiler
controlled data access. As far as processes only
interacting through nonlocal data were concerned,
the problem was solved merely by applying the
usual ALGOL access rules, with user convenience
and computer efficiency thrown into the bargain
(no subscripts needed to distinguish "my" local
variables from those of other processes of the
same kind) .

However, there was a need to obtain access to the
contents of an object from outside the object.
In a model containing "customers" and "clerks"
the active agent would need access to its own
data as well as those of the partner during
tlservice" .

The inspect - when - .•• - when - otherwise
construct did provide the required compiler
control, at the expense of run time tests to
determine the type of the inspected object.
However, the testing was turned into a
potentially constructive language mechanism,
rather than unproductive run time checking.
Compiler control required that outside access
be limited to the outermost block level of a
process. This had the advantage that a
process could prevent outside interference
by hiding local data in inner blocks.

Another aspect of security had to do with
de-allocation of storage. For reasons of
implementation simplicity and efficency one
would like de-allocation to be explicit,
say through a "destroy" statement, and/or
self-destruction by control going through
process end. However, the only way this
could be~ined with security would have
been a process referencing regime essentially
ensuring one pointer at a time to any process.
Unable to find such a scheme providing
sufficient programming flexibility we
implemented a reference count scheme,
an idea borrowed from weizenbaum (1962), and
also added a "last resort" garbage collector.

Automatic data retention was felt to be a
fairly dangerous approach, in the sense that
bad programs might easily lead to the flooding
of memory by useless data, the resulting
error message not giving many clues as to
which pointers were responsible. To reduce
that danger we insisted that procedures and
ordinary subblocks should be self-destructive
on exit, as they are in ALGOL 60.

Combining these two different de-allocation
strategies led to two possiblities of conflict
with respect to data accessing security.

251

1. A process could outlive its dynamic parent,
i.e. the block instance containing the
generating expression which gave rise to
the process. As a result the process
might access non-existing data through its
formal parameters. The remedy chosen was
to forbid all kinds of call by name
parameters to processes (including procedures,
labels and switches), only excepting arrays
which had to be allocated as separate objects
anyway. The restriction was sometimes painful,
but it did conform with the notion that a
process breaks loose (becomes "detached")
from its parent upon generation and starts
a life of its own.

2. A process could outlive its textually
enclosing block instance (by being pointed
to by data nonlocal to the latter), thereby
accessing non-existing nonlocals. A remedy
was to require that all processes be declared
(by "activity" declarations) local to a
special block, identified by the prefix
SIMULA.

SIMULA begin ---- end

Furthermore the SIMULA block must be the
outermost one or must be embedded in an
ordinary ALGOL program. This latter
requirement was enforced by the following
compiler stratagem: the special SIMULA
vocabulary was part of the compiler dictionary
only inside a SIMULA block, with the single
exception of the word "SIMULA"; the latter
was removed from the dictionary inside a
SIMULA block. (It would still be possible
to have dynamically nested instances of
a SIMULA block, by embedding it in a
recursive procedure. But to our knowledge
nobody has ever found a use for this
construct, or even checked that the compiler
could handle it properly) .

The SIMULA block would correspond to the
simulation model as such. It was not unnatural
to require that processes, running in quasi
parellel, should also be declared "in
parallel" and as direct components of
the model.

A final aspect of security concerned the ALGOL
rule that the value of a variable is undefined
upon declaration. With reference variables in
the language (see below) it was very clear that
"undefined values" would have to be treated
explicitly and cautiously by the implementation ..
The best way we could find of combining reasonable
efficiency with full programming security, was
to revise ALGOL on this point and assign neutral
initial values to all variables. Fortunately
this revision could not change the behaviour of
any correct ALGOL program.

2.3.4 Process Referencing.

The concept of "process sets" was planned to be
a prominent feature of the language, together
with associated scanning mechanisms and with
"selector expressions" as the only means
of process identification. In this respect
we were influenced by the design of SIMSCRIPT;

certainly the term "set" was borrowed from
that language, in SIMULA I meaning "ordered set
of' processes". It was questions of efficiency
and algorithmic generality that made us abandon
that approach and settle for "process pointer"
as: a basic data type.

As the language and its implementation took form
efficiency issues came more into the foreground.
Not only should the language implementation be
efficient, but the language itself must be such
that users were invited to make efficient programs.
In particular all built-in mechanisms ought to have
execution times 0(1) - that is of' "order 1".

One of our standard examples was a queue of high
and low priority customers. Rather than having
any easy-to-use selector expression that would
search the queue for a priority customer, it
would be better to maintain separate queues for
the two kinds of customers. Thereby customer
selection would become an order one algorithm.

Still, some kind of built-in list mechanism
was required for queueing and similar purposes,
so an abstract ordered set concept was included
as a second new data type, implemented as'
two-way circular lists. It seemed attractive
at the time to emphasize the "abstract" nature
of the set concept and enable processes to be
members of arbitrarily many sets at the
same time. This could be achieved by using
auxiliary "element" objects to represent the
processes in different sets. At the same time
all process references were made indirect through
element objects by providing only "element
pointers" in the language. Thereby "successor"
and "predecessor" functions could be implemented
as 0(1) mechanisms.

No special scan/select mechanisms were included,
except the natural extension of the ALGOL for
statement to control pointer variables. Unfortunately
the ALGOL "while" construct insists on advancing
the controlled variable before testing it, which
meant that the "set head" had to come out into
the open and make our sets look less abstract
than we had intended.

set S; element X;
X:= head (S);
for X:= suc(X) while exist(X) do

inspect X when ••• do .••• ;

Admittedly the inspect construct was a clumsy
and inefficient device (although 0(1» for
taking brief looks at objects in passing. However,
we rationalized by referring to the "invita
tion-to-efficiency" principle: the clumSier
the better, searching is abominable anyway.

In retrospect the introduction of "multi-member~
ship" sets was a mistake. Firstly the ';sets" were
really process sequences allowing multiple process
occurrences, whereas simple process chains would
have been more appropriate for most purposes.
Secondly, natural abstract set primitives like
PES and S := S --{p} for given process P and
set S were not in general 0(1) operations for
the chosen set representation. So, contrary
to good prinCiples, functions like "member(p,S)",

252

searching S for an element representing P, found
their way into the language as built-in procedures.
Thirdly, there was an ever present overhead in
process referencing caused by the fact that all
process pointers were directed through separately
allocated "element" Objects.

2.3.5 Process scheduling.

If (avoidable) searching in space is bad, then
searching for the correct point in time is even
worse. The May 1963 language specifications
(Dahl and Nygaard 1963) contain a statement

PAUSE « Boolean expression»

to that effect (awaiting the truth of the
Boolean expression). The idea was quietly
buried, and we made do with "passivate",
"activate", "hold", and I1cancel" statements
as described in (Dahl and Nygaard 1964a). There
was "direct" activation for immediately invoking
the next active phase of a process, comparable
to a procedure call, and activation with "time
delay" (including "hold") not unlike the CAUSE-AT
mechanism of SIMSCRIPT.

A simple way to implement model time scheduling
is to maintain a list of scheduled processes
sorted by time attributes. The list (we called
it the "sequencing set", SQS) was made to look
like a generalized ALGOL activation stack
by an invariant stating that the currently
operating process is at the end of the SQS.
(And its time attribute is the current model time).

Admittedly scheduling with a time delay is then
not an 0(1) operation, and to improve efficiency
the SQS was represented by a kind of binary tree
(left heavy, postordered). The tree preserved
the order of elements with equal time values
and had 0(1) algorithms for removal and
for LIFO and FIFO insertion. Worst case
insertion was O(n), but according to experiments,
(Myhrhaug 1965), the "average" behaviour was

much better.

Recently the insertion algorithm was analyzed
with respect to exponentially distributed time
delays (Jonassen and Dahl 1975), and the
average per20rmance in that case was found to
be O«ln n)).

The decision, made early 1964, not to include
any mechanism for "interrogative sequencing"
(Dahl 1968b), was a fairly natural one at
the time. It was based on considerations of
efficiency and ease of implementation, and
on the growing conviction that the language
must give the user full sequencing control in
order to be a sufficiently general purpose
in modelling tool.

As a result of discussion with colleagues,
especially those from the CSL group (Buxton
and Laski 1962), it became clear that the
case for interrogative sequencing was stronger
than we had originally realized, see e.g.
(Blunden 1968), compared to the "imperative"
sequencing of SIMULA (and SIMSCRIPT). The
dilemma may be explained as a choice between

a statement

await (Boolean expression)

in process P, and a "passivate" statement in
P together with matching occurrences of "activate
p" in other processes.
Advantages of the former are:

1. It is obviously easier to use, and more
self-documenting.

2. It leads to better program decomposition
in terms of processes; process P is made
more self-contained.

3. Properly implemented it protects the user
from making the error of forgetting
necessary occurrences of "activate P".
This kind of programming error is especially
nasty since the observable consequences
are negative: events that should have
happened in the model do not take place.

Yet, we feel that our design decision was the
right one, for the following reasons:

1. The notion of waiting until a given condition
becomes true is not well defined within the
framework of quasi-parallel processes, since
only one process may run at a time. Thus,
any realization can only approximate the
idea, which means that sequencing decisions
that ought to be in the hands of the user,
will have to be arbitrarily made by the
implementation. A "good" implementation is
likely to be so complicated that the exact
model behaviour is hard to predict from the
program text in complex cases.

2. There is no -a priori upper limit to the cost
of executing an "await" statement. The cost
is likely to increase with the size of the
model (as is true for searching in space
too) •

From 1 and 2 we draw the conclusion that
interrogative sequencing should not be among
the language primitives. Whether it should
be added as an auxiliary mechanism on top of
the language is perhaps a question of time,
money, programming skill and taste. Fortunately
one has learned to achieve program decomposition
(cf. pt. 2 above) by isolating sequencing
strategies as separately verifiable "class"-like
program components, representing such concepts as
abstract resource schedulers, communication channels,
or even interrogative schemes. (Compare the
monitor concept of Hoare (1974) for parallel
programming) .

Our attitude and feelings towards interrogative
sequencing has been conditioned by experience and
perhaps cultural factors. Two incidents from
the year 1965 are worth recounting.

At the IFIP Congress 65 in New York, May 24-29
1965 (Nygaard and Dahl 1965) we were able to
show results from our first real-life simulation
model (of a paper mill lumbering yard) .
For the first time we could exchange information
on typical simulation execution speeds and

253

found that SIMULA I's performance
was very much better than what a number of
people in that audience were accustomed to.

Some of the first SIMULA programs written outside
our Center were part oi UNIVAC's acceptance
tests for our compiler. Qne of the programs,
a model of the job flow through an operating
system, appeared to go into a tight loop. After
running it for 15 minutes while nothing
happened we were convinced that another
bug had been discovered in the run time system.
It turned out that the program was built around
a loop of the form

wait: if nothing has happened then
begin hold (one drum cycler;
---goto wait end;

According to the program, the computer was
switched on at 8 am, and the data provided
the first job arrival at 9 am. Since the
drum cycle was 34 milli-seconds, approxi
mately 100.000 events had to be executed
before anything happened. After some Simple
reprogramming a whole day's work was Simulated
in a few minutes of computer time, whiCh goes
to show that the "invitation-to-efficiency"
may well be turned down by language users.

2.4 Relation to other Languages.

SIMSCRIPT was the only simulation language
that we were closely acquainted with during
the design phase of SIMULA. From the preceding
sections it will be evident that it had a
considerable impact through its list processing
and time scheduling mechanisms. It also
contained a set of random drawing and other
utility routines, which served as a model
for our procedure library.

Information on GPSS (Gordon 1962) was available
to us through IBM Norway, but the GPSS system
looked more like a generalized simulation model
than a programming language. Consequently we
did not study it very closely. Only later did
it occur to us that the "transactions" of
GPSS could in fact be looked upon as processes
in quasi-parallel.

Tocher's work on GPS, e.g. (Tocher 1963), gave
us a greater awareness of some of the practical
considerations and difficulties of large scale
simulation. However, his system design appeared
to be too specialized.

SOL (Knuth and McNeley 1964a,b) came to our
attention too late (July 1964) to have an
effect on our design, but we were impressed
with its beauty and realized that others before
us had had the idea of quasi-parallel processes
in an ALGOL-like setting.

At the time when we offered our SIMULA introduction
paper (Dahl and Nygaard 1966) to the ACM,
October 1965, Don Knuth was serving as the
programming language editor. He wrote us a
very generous letter, typical for him, which
added to our pride and became the starting
point of a long and lasting friendship.

Other good friendships resulted from contacts and
discussions with the CSL designers John N. Buxton
and John Laski.

By far the most important language ancestor of
SIMULA I is of course ALGOL 60 itself. Through
i t:s orthogonal design, concept economy, strictness
of definition, and degree of compile time error
control it set a standard of quality that we
could only hope to approach, but which was
WE!ll worth striving for.

The concept central to us was the dynamic block
structure. In retrospect the two main lessons
were:

1.

2.

The distinction between a piece of program
text and an execution, or "dynamic instance"
of it.

The fact that data and operations belong
together, and that most useful program
constructs contain both.

In ALGOL, blocks (including procedures) are seen
externally as generalized operations. By introducing
mechanisms for quasi-parallel sequencing, 'essentially
the same construct could play the role of processes
in parallel, and through mechanisms for naming
block instances and accessing their contents
they could function as generalized data objects.
The essential benefits of combining data and
operations in a single construct were already
there to be explored.

One result of this exploration was the discovery
that "procedure attributes" might be useful.
The following example of a class of "abstract"
car objects is quoted from the Language Definition
document (Dahl and Nygaard 1965), sect. 5.3.

activity car;
begin real V,Xo,To ;

real procedure X; X := Xo + V * (time-T);
procedure update (Vnew); real Vnew; 0

begin X := X; T := time-:-V·= Vnew end·, ___ 0 0 ' a

end;

(The attributes X,V and update were used by a
police survey process to enforce a speed limit
on a given road section.) It is perhaps a pity
that the representation variables X and
To could not be hidden away in a su8block.

Another discovery was the fact that SIMULA had
become a power£ul list processing language.
Another example in the same document defines
a process for scanning the leaves of a tree,
advancing to the next leaf with each activation.

It should be mentioned that D. Ross, through
his AED project, (Ross and Rodriguez 1968)
independently and unknown to us had develo~ed
an ALGOL like language also exploiting the idea
of adding operators to data structures.

One factor which contributed to the comparative
success of the SIMULA I project was the fact
that we had a good ALGOL compiler to start with.
It had been developed at CASE Institute

254

of Technology in Cleveland by J. Speroni,
W. Lynch, N. Hubacker, and others. They had
extended the ALGOL language by a rather nice
I/O system, including an elaborate generalized
parameter list mechanism. The compiler was
finished and installed in Oslo late spring 1964
(which was in the nick of time for our project
schedule). Our implementation effort amounted
to about one man year's work on the run time
system, including built-in procedures, and one
man month for extending the compiler.

2.5 The Software Agreement between UNIVAC and
NCC.

In the second half of May 1962, UNIVAC arranged
the "UNIVAC Executive Tour". A Douglas DC-8
was filled with prospective customers who were
shown UNIVAC's new computers and production
facilities. KN was invited to participate by
Stig Walstam, Director of UNIVAC Scandinavia.

KN came into contact with James W.
Nickitas, then Assistant to Luther Harr,
director of UNIVAC Europe. Nickitas
was told about SIMULA and also about another
NCC software project: a Linear Programming
package based upon a new algorithm developed
by Sverre Spurkland at NCC. Nickitas immediately
arranged a meeting at a hotel in New York
between himself, KN and three important people
within UNIVAC's software activities: Alvin M.
Paster (Manager, Systems Research), his boss
Robert W. Bemer (Director, Systems Programming)
and Bemer's boss William R. Lonergan.

In the setting of the Executive Tour, a certain
measure of polite interest was of course to
be expected. But Paster, Bemer and Lonergan
turned out to be really interested, both
in SIMULA and the LP package. (They knew
that NCC recently had contracted a Danish GIER
computer and would not buy UNIVAC equipment).
Bemer at once invited KN to present SIMULA at the
session which he was to chair at the IFIP 62
Congress in Munich.

When the Executive Tour arrived at st. paul, KN
was very impressed by the brand new UNIVAC 1107,
and this both pleased Nickitas immensely (he
was deeply in love with that computer himself)
and also gave him another idea which he started
to work on.

On May 29 the Executive Tour had arrived in
Washington DC. After a dinner at the Mayflower,
Nickitas, who is of Greek descent, invited
KN to a Greek night club. while they were
listening to bouzouki music, watching a
beautiful belly dancer, Nickitas presented
the following informal proposal: UNIVAC
needed in the near future a good UNIVAC 1107
demonstration site in Europe. If NCC would
be willing to provide UNIVAC with SIMULA and
the LP package, UNIVAC would be willing to
sell the 1107 at a substantial discount.

When KN returned and told this story, most people
raised serious doubts as to the state of his mind.
In the end of June, however, Luther Harr,
Nickitas and Walstam turned up in Oslo and
presented the offer officially at a meeting
with the NCC board.

During the meeting, it beoame clear that Luther
Harr either was in a very generous mood, or
he had not read his lesson sufficiently well
and did not realize that SIMULA and the
LP was to be a part of the payment for the
1107. KN then asked him if UNIVAC was definite
in their decision to offer NCC a software contract
for these items, and this was confirmed. Nickitas
was foaming, but could do nothing.

Afterwards, Nickitas took the incident with grace
and became a very close friend of us as well as
NCC. But UNIVAC was from then on not too happy
when money was discussed in relation to SIMULA.

After a summer of intensive computer evaluation
studies the GIER contract was canoelled and
UNIVAC 1107 purchased by the NCC. Alvin M.
Paster became UNIVAC's man in the subsequent
software contract negotations. UNIVAC's letter
of intent was dated October 12, 1962, and it
also contained UNIVAC's first contract proposal
(Paster 1962). The contract work was delayed
because of the long oommunioation lines (the
contract was with UNIVAC headquarters, New York)
and because NCC had internal troubles associated
with the very rapid expansion neoessary to
take over a large soale computer.

Another factor also complioated the picture:
UNIVAC decided to support an alternative basic
software package for the 1107, ("Package B" as
opposed to the original "package A"). KN
was sent to the US in November 1962, as a
representative for the European 1107 users
to make an evaluation of the situation, which
was critical also for SIMULA: what would the
quality be of the proposed new Package B
ALGOL 60 compiler, to be developed at Case
Institute of Technoloqy in Cleveland? (The
Package A ALGOL 60, later to be dropped,
was contracted from General Kinetics Inc.).

KN returned as a convinced Package B
supporter, and had established very useful
contacts with Joseph Speroni and others
participating in the Case ALGOL 60 project.
In Los Angeles he had lectured SIMULA at
the RAND Corporation and got Bernie Hausner
interested. Hausner was the chief
implementor in the SIMSCRIPT team, (Markowitz,
Hausner and Karr 1963). He was promptly offered
a job at the NCC, which he later accepted, and
arrived on July 1, 1963.

At a meeting at NCC on May 2, 1963, UNIVAC to
our surprise confronted us with a proposal for
an extension of the contraot: we should also
implement a SIMSCRIPT compiler.

The reason was that UNIVAC had met a US market
demand for SIMSCRIPT. They did not lose interest
in SIMULA, but used Hausner's presence at NCC
to force us into SIMSCRIPT as well, as an

255

"initial step" towards implementing SIMULA.
(It was believed, also by us, that we could
use important parts of a SIMSCRIPT compiler
as a platform for SIMULA).

Another awesome new person now also entered
the scene: Mr. C.A. Christopher, UNIVAC's
Director of Procurement. We never met him, but
his presence was very much felt as the
representative of the world of law, money and
vast administrative hierarchies.

Our first encounter with this new world was
the first page of his contract text proposal,
where we read:

"WITNESSETH:

WHEREAS, UNIVAC desires to '_~ve a program
developed and implemented which will solve
Linear Programming Problems, ~ Simscript Compiler
developed and implemented, ant a SIMULA Compiler
developed and implemented, all for a UNIVAC 1107
Computer System, and
WHEREAS, NCC is willing and able to design, develop,
implement, check out and document such aforementioned
programs for the stated purposes on the terms
and conditions hereinafter set forth.

NOW, THEREFORE, in consideration of the premises
and of the mutual convenants herein contained,
the parties hereto agree as follows."

The contract text was worked out and agreed
upon. It specifies Robert L. Hengen as the
Technical Supervisor and C.A. Christopher
as the General Contract Administrator for
UN IVAC , KN serving in both these functions
for NCC. Hengen was, however, substituted by
Alvin M. Paster. Paster gradually got other
responsibilites and Hengen returned in February,
1964. The contract was dated June 1, 1963, signed
June 1 by the NCC and July 3 by UNIVAC,
(Agreement 1963) •

The SIMULA part of this contract clearly
describes (in Article III B) the SIMULA compiler
as a preprocessor to the ALGOL compiler. It
also has our language specifications of May 18,
1963 (Dahl and Nygaard 1963) as an appendix,
defining the SIMULA language. It states that
variations in the language have to be
approved by UNIVAC.

The payment was $35.000, according to a payment
schedule which assumed that the SIMSCRIPT part
of the contract should be completed first.
It is also implicitly assumed that the SIMULA
compiler should be ready for acceptance tests
by July 3, 1964 (360 days after the contract
was signed).

The contract gave NCC 60 days maintenance
responsibility after it had been accepted by
UN IVAC , and it described the details of the
acceptance procedure.

The SIMSCRIPT compiler was to be completed
very quickly, in 5 months, for the sum of
$25.000. Already in August-September 1963
it became clear that it would not be sensible

to transform the SIMCRIPT IBM 7090 compiler into
an 1107 compiler. NCC immediately told this
to Paster during a visit at NCC late September,
and UNIVAC agreed to terminate this section of
the contract.

During this visit UNIVAC got our proposal of
making a SIMULA compiler with a new storage
management scheme, and not only a preprocessor
and procedure package in ALGOL.

Communication between UNIVAC and NCC was problematic,
and for various reasons our work was delayed. In
February, 1964 the terms of the contract were
modified (Christopher 1964). SIMSCRIPT was
officially terminated. The delivery date was
changed to January 1, 1965. The payment schedule
was revised: $33.000 had already been paid
($8.000 for SIMSCRIPT) $20.000 were to be paid
by March 31, 1964, and $30.000 were to be paid
upon UNIVAC's acceptance of the SIMULA and LP
products.

(The main reference to the history of the contract
work is (Nygaard 1965a».

In February 1964 the SIMULA language could
be reconsidered with the freedom made available
by the new storage management scheme developed
in the autumn by OJD. The process concept
was developed and reported in March; (Dahl and
Nygaard 1964a). From then on only minor
language revisions were made.

A major problem encountered was the late arrival
of the CASE ALGOL 60 compiler (May-June 1964) and
the lack of suitable documentation, particularly
relating to its interface with the EXEC 11
operating system. Two American visitors
during the summer of 1964 provided useful
assistance in this situation: Ken WaIter from
Purdue and Nicholas Hubacker from CASE. At the
NCC Bj~rn Myhrhaug and Sigurd Kubosch were
members of the SIMULA team. The work during
the summer and autumn went on with much
effort and little drama. Progress reports
were forwarded to UNIVAC as before, but we
only got a reaction once (through a telex)
when we urgently requested an aknowledgement
of the arrival of our reports. Our impression
was that the personnel with knowledge of the
contracts left UNIVAC and did not inform
those who took over their responsibilities.
(We got, however, the scheduled March 1964
payment of $20.000).

When the SIMULA I compiler was ready, on the
date specified by the revised contract, January
1965, UNIVAC was notified, but we got no
reaction. During our visit to the US in May
1965, in connection with the IFIP 65 World
Congress, we had a meeting with Ira A. Clark
(Technical Coordinator for Systems Programming,
UNIVAC, st. paul) and W.J. Raymond (Systems
Programming Manager, UNIVAC International
Operations, New York) .

Clark's attitude towards SIMULA was initially
very negative, and for good reasons. It turned
out that he, who had got the responsibility for
handling the contract, had never seen our letter.

256

Later on it was discovered, we were told, in
an abandoned desk at the UNIVAC New York head
quarters.

Clark later on was very helpful as our contact
during the acceptance tests which followed.
UNIVAC forwarded their test problems to be run
in Oslo on October 27, 1965. On January 10,
1966 a telex informed us that UNIVAC was
accepting SIMULA I, and a letter from Ira A.
Clark (dated January 27, 1965) said:

"We have examined the results of test
cases submitted as acceptance runs for
the SIMULA compiler. In every case, the
compiler performed successfully and useful
results were obtained. The personnel in
the Center were very helpful in doing
everything necessary to analyze our test
cases, insure the accuracy of our work,
successfully compile these SIMULA tests,
and provide helpful comments and listing
annotation of output."

S1MULA I was for some time UNIVAC Category III
Software. This implied that UNIVAC distributed
the compiler, but NCC had the maintenance
responsibility. When NCC had completed a
comprehensive technical documentation, SIMULA I
was (in May, 1967) made Category I software.
(NCC had a ~aintenance agreement with UNIVAC
until UNIVAC adapted the SIMULA I compiler
to its EXEC-8 operating system).

In spite of our efforts, UNIVAC had lost
interest in our LP package, and a last letter
from C.A. Christopher (1965 Dec. 15) stated:
"To date we have made payments to you of
$53.000. I realize that time and effort were
put into the other projects but with negative
results. We feel that the total paid NCC
to date represents full and adequate reimbursement
for the SIMULA Compiler."

2.6 The Response to SIMULA I.

At the NCC the use of SIMULA I for simulation
programming started immediately and spread
rapidly. In 1965 three SIMULA I courses were
given at NCC.

The use of SIMULA I up to December 1965 is reported
in (Nygaard 1965b). A later version of this
report covers the period up to June 1968,
(Hegna, Lund and Nygaard 1968) .

A visit to Stockholm in February 1965 triggered
off an important development. We were lecturing
three days at the Royal Swedish Institute of
Technology and were pleased to note the first
day that two representatives from the big
Swedish company ASEA seemed to be very interested.
The second day we were disappointed to find that
the ASEA people did not turn up. The third
day they returned however, Niels Lindecrantz
of ASEA bringing an offer: ASEA would consider
using SIMULA for a number of jobs if we were
willing to do a test job free of charge.

We were requested to program and run a large
and complex job shop simulation in less than

four weeks, with a simulation execution efficiency
which was at least four times higher than that
job on the FACIT computers. We accepted,
succeeded and got the other jobs. (A simplified
version of this program is one of the main
examples used in (Dahl 1968».

In addition to the money from UNIVAC, NCC got
a number of other benefits. Our Operational
Research Department could take on jobs which
otherwise would have been impossible to accept.
Customers got important problems solved. The
first SIMULA-based application package, for
simulation of logic circuits, was implemented
(Stevenson 1967).

The NCC developed international connections,
and we got into direct contact with

many of the other research workers developing
programming languages, particularly simulation
languages, at the time.

We had at an early stage ideas for using SIMULA I
as a tool in real-time programming, but these
plans never materialized (Nygaard 1963e, in
Norwegian) •

Burroughs was the first of the other computer
manufacturers to take an interest in SIMULA I,
for two reasons:

the advocacy of Don Knuth and John L.
McNeley, the fathers of SOL.

the general ALGOL orientation within the
company.

In 1968 SIMULA I was made available to Burroughs
B5500 users. The language was modified and extended,
the reasons being discussed in a letter from
John S. Murphy of Burroughs, Pasadena (Murphy 1968) .

Another early interest in SIMULA I developed in
the Soviet Union, reported in (Nygaard 1968b). The
main center of activity was the Central Economical
Mathematical Institute of the Russian Academy of
Sciences in Moscow (CEMI). The CEMI Computer
Science departement was headed by E.I. Yakovlev.
KN was invited to the Soviet Union twice in the
summer of 1966, and gave one-week courses in
Moscow, Leningrad, Novosibirsk, and some lectures
in Kiev. A number of reciprocal visits
resulted and a cooperative agreement was
in effect for some time. OJD and Myhrhaug
lectured SIMULA I and SIMULA 67 implementation
in Moscow, and a team in Yakovlev's department
later implemented SIMULA I on aURAL 16 computer.
The project leader was K.S. Kusmin. Implementation
on the BESM 6 computer was discussed but never
carried out. The SIMULA I manual (Dahl and
Nygaard 1965) was translated into Russian.

During the first years of SIMULA's life, the
NCC had to do most of the teaching of the
language. We soon discovered that this was
not a trivial task. As a result we developed
the pedagogical approach in which the process
concept was the first one introduced, then the
reference ("element") concept and informal
versions of the statements followed. Procedures
and formalized versions of the statements were

257

introduced later. Graphical models were used
extensively (see section 2.3.1).

Those familiar with FORTRAN very often had
difficulties in unlearning that language. Those
familiar with ALGOL were better off, but still
found it problematic to substitute ALGOL's
single-stack picture of the world with SIMULA's
multi-stack picture. Quite often the newcomers
to programming seemed to absorb SIMULA faster
than the old-timers.

When SIMULA I was put to practical work it turned
out that to a large extent it was used as a
system description language. A common attitude
among its simulation users seemed to be: Sometimes
actual simulation runs on the computer provided
useful information. The writing of the SIMULA
program was almost always useful, since the.
development of this program (regarded as a system
description) resulted in a better understanding
of the system. Semi-formalized SIMULA programs,
with the input, output and data analysis statements
omitted, proved to be useful in discussing the
systems' properties with people unacquainted
with programming.

SIMULA was intended to be a system description
and simulation programming language. Some users
discovered that SIMULA I also provided powerful
new facilities when used for other purposes
than simulation. After the first introduction
phase we became more and more interested in this
use of SIMULA I, and we soon discovered a
number of shortcomings within the language.
The resulting discussions on the possible
improvements to SIMULA I in 1965-66 initiated
the development of SIMULA 67.

3. SIMULA 67.

3.1 From SIMULA I to SIMULA 67.

During 1965 and the beginning of 1966, most of our
time went to using and introducing SIMULA I as a
simulation language. Tracing facilities were desig
ned and implemented (Dahl, Myhrhaug and Nygaard
(1966a), but were never used very much (at the NCC).

When the first large jobs had been successfully
completed and a number of users had learned the
language, we became more and more interested in
the possibilities of SIMULA I as a general purpose
programming language. A first reference to a "new,
improved SIMULA" occurs in a letter dated septem
ber, 1965 (Nickitas 1965).

We explored SIMULA I's list structuring and corou
tine capabilities, the use of procedure attributes
etc. Gradually we realized that a number of short
comings existed in the language.

1. The element/set concepts were too clumsy as
basic, general purpose mechanisms for list
processing. Even for simulation modelling
our experience showed that simple process
pointers might be better, combined with an
inherent set membership capability of proces
ses, restricted to one set at a time.

2.

3.

4.

5.

6.

The inspect mechanism for remote attribute
accessing turned out to be very cumbersome in
some situations. (Try to compute X.A+Y.A using
inspect statements). Then Hoare's record class
proposal appeared (Hoare 1965, 1966, 1968),
which showed how full security could be obtai
ned in constructs like X.A by compile time
reference qualification, and how reasonable
flexibility of run time referencing could be
obtained by the idea of record subclasses.

We were beginning to realize that SIMULA I's
simulation facilities were too heavy a burden
to carry for a general purpose programming
language. certainly the multistack structure
was a big advantage, but quasi-parallel se
quencing had many applications independent
of the concept of simulated time.

We had seen many useful applications of the
process concept to represent collections of
variables and procedures, which functioned as
natural units of programming although they had
no "own actions". It occurred to us that the
variables of such an object could play the
role intended for the not very successful own
variables of ALGOL 60, since they survived--
individual procedure activations. In our ex
perience, however, such data would often be
associated with a group of procedures rather
ttan just one. The difficulties inherent in
the own variable concept were related to gene
ration and initialization. However, SIMULA
objects were generated by explicit mechanisms,
and initializing actions could be naturally
aSSigned as "own actions" of the object.

When writing simulation programs we had obser
ved that processes often shared a number of
common properties, both in data attributes
and actions, but were structurallY different
in other respects so that they had to be
described by separate declarations.

Such partial similarity fairly often applied
to processes in different simulation models,
indicating that programming effort could be
saved by somehow preprogramming the common
properties.

Parameterization could not provide enough
flexibility, especially since parameters cal
led by name, including procedure parameters,
had been banned for processes (for good rea
sons, see section 2.3.3). However, the idea
of subclasses, somehow extended to apply to
processes, might prove useful.

We were itching to revise the SIMULA implemen
tation. The UNIVAC ALGOL compiler, although
efficient for most ALGOL programs, was terri
bly wasteful of storage space whenever the
number of process activation records was large,
as it would be in most simulation models. This
made memory space our most serious bottleneck
for large scale simulation.

Jan V. Garwick, back from work in the US, had
shown us a niCe compacting garbage collector
(now well known, said to have been deSigned
for the implementation of a language called

258

LISP 21. Some experimentation indicated that
it was more efficient than our combined refe
rence count/garbage collecting scheme.

Furthermore it could take advantage of active
deal location at exit from procedures and
blocks, simply by moving the free pointer
back whenever the deletion occurred at the
end of the used memory. Thus, ALGOL programs
could be run with hardly any overhead at
all, and most SIMULA programs would benefit
too.

Our discussions during the spring and summer of
1965 had been rather academic: what should be re
vised if a revision was to be made. In the autumn
of 1965-the Technical University of Norway in
Trondheim contacted NCC and expressed its interest
in implementing a new ALGOL 60 compiler on the
UNIVAC 1100 series. The possibilities of basing a
SIMULA compiler upon an ALGOL 60 compiler designed
with SIMULA in mind seemed attractive. From Feb
ruary 1966 the term "SIMULA IT" started to appear
in our correspondence.

We started at that time a cooperation with a team
headed by Knut Skog and Kristen Rekdal at the Tech
nical University. NCC's part of that work faded out
from December 1966 onwards, when the SIMULA 67
ideas were developed. The compiler was completed
by the Technical University and marketed under the
name "NU ALGOL".

This was the background for our language discus
sions during the autumn of 1966. All six points
listed above were motivating us, but in retrospect
it appears that pOints 2 and 5 - attribute acces
sing and common properties of processes - were the
most important ones. That is, important in the
sense that our work to resolve these problems re
sulted in the class/subclass concepts which struc
tured the rest of the new language.

The subclass idea of Hoare (68) was a natural
starting point, but there were two difficulties:

1. We needed subclasses of processes with own
actions and local data stacks, not only of
pure data records.

2. We also needed to group together common pro
cess properties in such a way that they could
be applied later, in a variety of different
situations ~ecessarily known in advance.

Much time was spent during the autumn of 1966 in
trying to adapt Hoare's record class construct to
meet our requirements, without success. The solu
tion came suddenly, with the idea of "prefixing",
in December 1966. We were thinking in terms of a
toll booth on a bridge, with a queue of cars
which were either trucks or buses. (This example
reappears in (Dahl and Nygaard 1968»).

A "stripped" list structure, consisting of a "set
head" and a variable number of "links", had been
written down, when we saw that both our problems
could be solved by a mechanism for "glueing" each
of the various processes (trucks, buses) on to a
"link" to make each link-process pair one block
instance. Such a language feature would not be
difficult to implement.

Now each of the processes in the example would be
a block instance consisting of two layers: A prefix
layer containing a "successor" and "predecess~
and other properties associated with two-way list
membership, and a main part containing the attri
butes of either a truck or a bus.

In order to obtain compiler simplicity and, at the
same time, security in attribute referencing, it
was necessary that the two-layer property of these
processes was known at compile time and that the
prefix and main part were permanently glued toget
her into one block instance.

The syntax for this new language feature was easy
to find. The "links" could be declared separately,
without any information about the other process
classes which used link instances as a prefix layer.
Since the processes of these other process classes
were at the same time both "links" and something
more, it was natural to indicate this by textually
prefixing their declarations with the process class
identifier of this common property, namely "link".
These process classes would then be "subclasses"
of "link".

It was evident that when prefixing was introduced,
it could be extended to multiple prefixing, estab
lishing hierarchies 0: process classes. (In the
example, "car" would be a subclass of "link",
"truck" and "bus" subclasses of "car".) It was also
evident that this "concatenation" of a sequence of
prefixes with a main part could be applied to the
action parts of processes as well.

Usually a new idea was subjected to rather violent
attacks in order to test its strength. The prefix
idea was the only exception. We immediately reali
zed that we now had the necessary foundation for a
completely new language approach, and in the days
which followed the discovery we decided that:

1. We would design a new general programming
language, in terms of which an improved
SIMULA I could be expressed.

2. The basic concept should be classes of objects.

3. The prefix feature, and thus the subclass
concept, should be a part of the language.

4. Direct, qualified references should be intro
duced.

The development of the first SIMULA 67 proposal,
based upon these decisions, is described in the
next two sections.

3.2 The Lysebu Paper.

The IFIP Technical Committee 2 (on Programming
Languages) had decided in the autumn of 1965 that
an IFIP Working Conference on simulation languages
be held in Oslo in the spring of 1967. The decision
was the result of a proposal made by the Norwegian
representative to TC2 at the time, OJD. At New Year
1967 the preparation had been under way for more
than a year, and the time and place of the confe
rence had been fixed to May 22-26 at Lysebu, a
resort in the hills outside Oslo.

259

We naturally hoped to be able to complete the de
sign of our new language in time for the Lysebu
conference. According to the conference schedule,
preprints of all papers were to be distributed to
the participants at the end of March. Consequently
we were in a hurry, but fortunately the most diffi
cult work had already been done, and the initial
version of the paper (Dahl and Nygaard 1967a) was
ready in time.

We had a fairly clear idea of how to unify the old
process-like objects and the new concept of self
initializing data/procedure objects (section 3.1,
point 4), and at the same time remove the special
purpose "model time" concept from the former.
Since the term "process" could not apply to the
unified concept, we introduced the more neutral
word "object" as a technical term.

An object would start its life like an instance
of a function procedure, invoked by the evaluation
of a generating expression. During this phase the
object might initialize its own local variables.
Then, on passage through the end of the object or
as the result of a new basic operation "detach",
control would return to the generating expression
delivering a reference to the object as the func
tion value. In the former case th~ object was
"terminated" with no further own actions, in the
latter case it had become a "detached object"
capable of functioning as a "coroutine".

The basic coroutine call "resume «object refe
rence>)" would make control leave the active
object, leaving behind a reactivation point at
the end of the resume statement, and enter the
referenced object at its reactivation point. (The
Lysebu paper mentions a third primitive operation
"goto«process reference»" terminating the active
object, but on this point revisions were made
later.)

A declaration giving rise to a class of objects
might well have been called an "object class"
(in analogy with Hoare's record class) .-rn-Ghoo
sing the shorter term "class" we felt that we had
a good terminology which distinguished clearly
between the declared quantity (the class) and its
dynamic offspring (the objects). Our good inten
tions have not qUite worked out, however. Many
users tend to use the term "class", or perhaps
"class instance", to denote an object, no doubt
because "object" does not occur as a reserved word
of the language. (As an afterthought, anno 1978, we
might have insisted that all class declarations must
be prefixed, and defined a primitive outermost pre
fix "object" containing detach and resume as local
procedures. See also (Wang and Dahl 1971)).

The idea of class prefixing and concatenation was
the most important step towards our goal. It had
become possible to define classes primarily intended
to be used as prefixes. Our idea was that some of
the special purpose concepts of SIMULA I could be
expressed by such "prefix classes" available to the
programmer as plug-in units.

It was easy to describe "circular list processing"
(like "sets" in SIMULA I) by means of a little class
hierarchy for list elements (class link) and list
heads (class list, later called "head"), with a

common prefix part containing forward and backward
pointers. Now any class prefixed by "link" would
give rise to objects that could go in and out of
circular lists, using procedures like "into" or
"out:" declared within its prefix part together
Witll the list pointers. The lists themselves would
be represented as "list" objects, possibly augmen
ted by user defined attributes.

In order to explain the process concept as a prefix
class it became necessary to extend the concatena
tion mechanism slightly. The original rule was that
the operation rule of a concatenated class consisted
of t:he operation rule of the prefix class followed
by t:hat of the main part. For a process object it
was necessary to have predefined actions both at
the beginning and at the end of its operation rule.
So 1:he prefix class had to be given a "split body"
whose operation rule consisted of initial actions
and final actions textually separated by a special
symbol "inner".

Now the task was simple. The prefix class was named
"process", which meant that the term "activity" of
SIMULA I would be represented by the much more des
criptive term "process class". The Lysebu paper
shows a class "process" containing a real variable
"evtime" representing model time, and a ref(process)
variable "nextev" used to descrioe the SQS as a
one-way list of process oojects. (In an actual
implementation we intended to use the logically
equivalent binary tree technique, mentioned in
section 3.2.5). Obviously the sequencing primitives
of SIMULA I could be represented by procedures
manipulating the SQS, keeping it sorted with respect
to evtime values, and passing control by resume
operations. The "final actions" of a process were
needed to remove the now dying object from the SQS
and pass control to its successor on the SQS. Now
only two problems remained: where to store the SQS
pOinter, and how to represent the "main program"
of a simUlation model.

We had independently, while exploring the linguistic
consequence of the prefix notation, considered
block prefixes as a natural extension. The reason
for this was the fact that an ordinary in-line
block could De viewed as the body of a very specia
lized anonymous class. We were quite pleased to
discover that this very idea had been used before,
through the ad hoc notation

~ begin .•••••• end

of SIMULA I for making available the non-ALGOL
simulation facilities.

NO~I everything fell into place. We only had to col
lect the various bits and pieces like prefix clas
ses, procedures, and nonlocal variables (the SQS
pointer) into one big class, appropriately named
SIMULA and intended to be used for block prefixing.
Its "initial actions" were used to initialize the
SQS, containing a specialized process object imper
sonating the main program, whereupon control would
proceed as it should: to execute the first active
phase of the latter.

One ad hoc ruie was needed to make the whole thing
run: "an instance of a prefixed block is a detached
object by definition". Thereby the main program
could function as a coroutine in quasi-parallel

260

with its local process objects. (It was later dis
covered that this effect could have been achieved
in a somewhat more natural way, (Wang and Dahl
1971» .

It goes without saying that the class/subclass
constructs had not been fully explored as general
purpose programming tools at the time of the first
version of the Lysebu paper (March 1967). However,
the possibility of using class declarations to de
fine "language dialects oriented towards special
problem areas" is pOinted out, and so is the im
portance of "making user defined classes generally
available" •

The generalization to hierarchies of "language
dialects" was fairly obvious. In June 1967 the
"SIMULA class" had been renamed and reorganized
as a two level hierarchy,

class SIMSET, and
SIMSET class SIMULATION,

reflecting the fact that circular list handling
could De useful for other purposes than simulation
modelling. (We never quite got rid of the term "set"
from SIMULA I.) This kind of hierarchy points to
wards a technique of level-by-level bottom-up pro
gram design not unlike that of Dijkstra in construc
ting his THE operating system, (Dijkstra 1968).

No mention of the class concept as an abstraction
mechanism is made in the Lysebu paper. It took
several years of slowly growing understanding,
see e.9. (Dahl 1970), (Dahl and Hoare 1972),
until the fundamental difference between the inter
nal ("concrete") view of an object and an external
("abstract") one finally was made clear by Hoare
(1972) .

It is worth noticing that the Lysebu paper, as
distributed prior to the conference, does not
mention the concept of virtual attributes. In fact,
a preliminary version of that mechanism was deve
loped in April-May and is described in a paper
dated May (Dahl and Nygaard 1967b) ,also available
at Lysebu. The concept was discussed at the confe
rence, and a short section on virtuals has been
added to the paper as it appears in the conference
proceedings, (Buxton 1968). (This conference report
is still today quite refreshing reading.)

We had seen that the class/subclass facility made
it possible to define generalized object classes,
which could be specialized by defining subclasses
containing additional declared properties. However,
the concatenation mechanism was not qUite flexible
enough for adding details to the operation rules.
Something like procedme parameters still seemed to
be needed for classes.

As discussed in section 2.3.3 the ALGOL-like call
by name parameters were out of the question for
reasons of security and storage allocation strategy:
the actual parameter could be lost during the life
time of an object. The problem then was to find a
name-parameter-like mechanism that would guarantee
a safe place for the actual parameter. After much
trial and error we hit on the virtual quantity con
cept where the actual would have to be declared
in the object itself, but at a deeper subclass level
than that of the virtual specification. Now gene-

ralized objects could be defined whose behaviour
pattern could be left partly unspecified in a
prefix class body. Different subclasses could con
tain different actual procedure declarations.

The implementation efficiency of virtual quantities
was good, since no change of environment was needed
to access a virtual from within the object. Unfor
tunately we chose to model the virtual specifica
tions after the parameter specifications of ALGOL,
which meant that the parameters of a virtual
procedure had to be run time checked.

It has later been shown that virtual quantities
make it possible to directly use class hierarchies
for top-down programming, but in a fairly clumsy
way. Consequently this way of using classes has
not received much attention.

3.3 The Co~~on Base Conference.

As reported in section 3.5 a SIMULA 67 Common
Base Conference (CBC) was arranged June 5-9
1967 at the NCC, two weeks after the Lysebu
conference.

The following papers were submitted to the CBC:

1. The Lysebu paper (Dahl and Nygaard 1967a,
March) ,

2. "SIMULA 67 Common Base Proposal" (Dahl
and Nygaard 1967b, May), and

3. "Proposals for Consideration by the SIMULA
67 Common Base Conference" (Dahl and
Nygaard 1967c, June).

The most controversial subject discussed at
the CBC was what we called "in...,line" declarations.
We had realized that the indirect naming of
objects through reference variables often
represented wasteful overhead for the programmer
as well as the program execution (not to speak
of the garbage collecting effort). It would be
useful to have a direct naming mechanism, in fact
treating objects as ("in-line") compound variables.
The Common Base Proposal, section 8.3 reads:

"8.3 In-line declarations

8.3.1 Syntax

<in-line object>::=<identifier><actual parameter
part>

<in-line declaration>::=<class id><in-line
object> I

<in-line declaration>,<in-line

assignment of attributes.)

The implementor has the option to represent
the declared variable by the associated
Object itself, rather than by the associated
ref value."

(The important problem of reference variables else
where in the system pointing to an in-line object
was not mentioned. To allow that would have grave
consequences for the garbage collector.)

The proposals of (21 were, however, to be
replaced by a set of much more ambitious proposals,
(3), intended to unify the concepts of "class"
and "type". These ideas were to some extent
inspired by discussions at the Lysebu conference,
and in particular the papers (Garwick 1968) and
(McNeley 1968). (Actually the paper presented
to the CBC was an iteration of (3) produced
during two hectic days and nights prior to the
CBC. This paper has been lost.) Essentially
the proposals were as follows:

1. Let C be a class identifier. Then

def(C) V <actual parameter part>

is a declaration which defines a variable
named V of "type" C. V is an (in-line)
object of class C initialized according to
its operation rule and the actual parameter
part. Thus, the above declaration is
comparable to

ref(C) X; followed by X:= new C
<actual parameter part>

except that the latter generates an "off
line" object. The types C and ref (C)
are distinct and an operation like X:= V
is therefore illegal. An ad-hoc restriction
on the class body (that it must contain no
occurrence of the reference expression "this
COO) ensures that no reference values pointing
to an in-line object can ever occur.

Given a reference value X of type ref (C)
to an object, then "X." is an expression
of type C denoting that object.
(Since it is mentally difficult to
distinguish correctly between a reference
to, or "name on", a thing and the thing
itself, we felt there should be a notational
difference forcing the programmer to precise
thinking.)

object> 2. Each basic type is a predefined class with
local data and procedures defined outside

8.3.2 Semantics

A class identifier, underlined, may be used
as a declarator. The identifier of a
declared <in-line object> is a qualified
ref variable, initialized to refer to a
generated object of the stated class,
'and with the given actual parameters.

Assignment to the variable is not allowed.
(Procedure declarations local to the
class may be used to simulate en-bloc

261

the high level language. There is a one-to-one
correspondence between operator symbols
and a certain preselected set of identifiers
(such as "becomes", "plus", "greater", etc.).
Thus a declaration like "integer a" means

def(integer)a;

where "integer" is a predefined class. And
a statement like "a:=bilc+d" means

a.becomes(b.times(e).plus(d»

where the closing parentheses are positioned

according to operator priority, and the
identifiers refer to procedures local to the
class "integer".

A consequence of this transformation rUle was
that operations such as :=, =, +, etc. would be
available for a user defined type if and only if
the class body contained proced.ures with
the corresponding names.

3. Whenever a formal parameter is specified to
be of type C, a corresponding actual parameter
must belong to C or to a subtype (subclass) of
C. This proposal opened up for a lot of
interesting possibilities such as introd.ucing
side effects to assignment operations on
variables belonging to subtypes of the basic
ones, (McNeley 1968), without changing their
meaning as operand.s in basic type expressions.
It also made it possible to unify the
concepts of function procedure and. prefixed.
class; an instance of the procedure would.
be an object whose prefix part played the
role of the function value.

No doubt the above proposals were prematurely
presented. Although the final proposal document
has been lost, we are sure that we had not
managed to work through all the conse~uences
for the language and. its implementation during
the two short weeks available between the Lysebu
conference and the CBC.

Anyway, we made a valiant attempt to get our
new proposals accepted by the CBC, but failed.
The parties who had committed themselves to
implementing the new language felt they were
too complicated and cautiously rejected them,
(NCC 1967). We were in no position to overrule
these parties. It was crucial for the
continuation of the whole SIMULA 67 effort
to get at least one major manufacturer (in
this case Control Data, see section 3.5) to commit
itself to implementations. Unfortunately the
simpler proposal of (2) was swept asid.e too.

The concept of virtual quantities was thoroughly
discussed by the CBC. The d.iscussion lead. to
an interesting and non-trivial improvement of
our own proposal. By a slight change of the
binding rule for actuals it became possible to
redefine previously bound virtuals. An actual
declaration provid.ed. at a deep subclass level
of an object would have precedence (throughout
the whole object) over d.efinitions at more
shallow levels. This meant ad.d.ed. flexibility
in designing application languages. "Default"
actuals for virtual p'rocedures, provided at an
application language level, now were replaceable
in user defined subclasses. For instance, default
error printouts might be replaced. by corrective
actions applicable in user defined. situations.

One beauty of the principle of re~uired. qualifi~
cation of references lies in the fact that it
solves completely, at least for disjOint classes,
one of the P!oblems of language conSistency
discussed in section 2.3.3. No object can lose
its textual environment by active deletion of
block/proced.ure instances, because any reference

262

to an object must occur within the textual
scope of the object class d.eclaration and
is therefore embedded in that environment.

However, in order to utilize the full capabilities
of class concatenation it was deemed necessary
to allow prefix sequences to cross block levels.
In particular predefined classes, declared nonlocally
to a user program, must be available for prefixing
within the program. But then consistency is lost,
since an object belonging to a local subclass may
lose part of its textual environment if pointed
to by a nonlocal reference. In order to prevent
this phenomenon we had to devise an ad hoc rule
restricting reference assignments (and class
prefixing), the so called "Rule R", see e.g.
(Dahl and Nygaard 1967d), section 4.1.2:

"A reference assignment is legal only if
the left hand quantity is declared within
the scope of the class qualifying the
right hand side and all its subclasses,
scopes defined after effecting all
concatenations implied by class and block
prefixes. "

(It must be admitted that the wording of this rule
is more compact than understandable). The
rule would (as far as we know!) restore full
security and consistency, even if unqualified
references were allowed. However, it was very
unnatural, too implicit, and therefore very
difficult to grasp, to observe, and to enforce.
A Simpler rule of "same block level", called
"Rule S", was apparently too restrictive:

"All classes of a prefix sequence must
belong to the same block head (wh:ich may
be that of a concatenated class or a prefixed
block). Qualification is required for all
references."

These matters were discussed by the CBC, but no
recommendation was given, except to forbid
unqualified references. Soon afterwards it
occurred to us, however, that the essential
capabilities of the prefixing mechanism could
be salvaged and full security retained by
applying the Rule S to class prefixes, but
not to block prefixes. Sufficient flexibility
could now be obtained by embedding predefined
classes in a textually enclosing class C, say,
(also predefined). Now these classes could be
made available for class prefixing in any desired
block head by prefixing that block by the class C.

Since that technique would be the standard way
of implementing application languages in any
case, we were fairly happy. still, there are
situations in which Rule S is a nuisance.

Our various proposals to the CBC contained
nothing about string handling and input/output.
The CBC unanimously stressed the importance
of having such facilities included as well
defined parts of a "Common Base Language".
Consequently a working group was established
consisting of members of the implementation
teams and persons from the NCC. One hoped that
the class/subclass concept might lead to fruitful
constructs. The proposals of the group should
be submitted for approval to the "SIMULA 67

Standards Group" (see section 3.5), which was
also established by the CBC.

Of the remaining recorded decisions of the CBC
(NCC 1967) one notes a recommendation on the
syntax of "external class" declarations (for the
inclusion of separately compiled classes) .

Everything considered, the CBC played a very
constructive role during the birth of SIMULA 67.
Among other. things it helped the first implementation
efforts to get off the ground by rejecting our
premature proposals. However, if the CBC had been
delayed a couple of months, SIMULA 67 might well
have contained a general type concept.

As an immediate follow-up of the CBC we produced
a document called "The SIMULA 67 Common Base
Definition", dated June 1967, (Dahl and Nygaard
1967d), which, except for the missing string
and I/O faCilities, gives a surprisingly accurate
description of the language as it exists today.

In the preface are listed those whom we felt at
that time had given us useful advice: C.A.R. Hoare,
Jan V. Garwick, Per Martin Kjeldaas, Don Knuth,
John Buxton, John Laski, Pat Blunden and
Christopher Strachey.

The Rule S, which later was made part of the
Common Base, is mentioned as an "optional
restriction". The introduction of the document
refers to plans for a "full SIMULA 67 language",
as opposed to the Common Base, which would contain
a unification of the type and class concepts.
But this dream was never to be realized.

3.4 The SIMULA 67 Common Base.

According to the CBC the SIMULA 67 Common Base
(SCB) had been frozen in June, except for string
handling and I/O facilities. The responsibility
for the latter was assigned to a working
group reporting to the SIMULA Standards Group
(SSG). In actual fact a few adjustments were made
to the SCB during the autumn of 1967, along with
the development of the new fa~ilities.
But all decisions and proposals were made in
contact with the implementation teams headed
by P.M. Kjeldaas in Oslo and J. Newey in
Paris (see section 3.5).

At NCe Bj~rn Myhrhaug was given responsibility
for the development of the string and I/O proposals.
Myhrhaug had for a long time been most useful as
a partner in the implementation work and as a
"sounding board" in our language discussions.
Now he became a member of the design team and
thus a co-author of SIMULA 67.

In October Myhrhaug had his first string
handling proposals ready, (Myhrhaug 1967).
There were three alternatives, two of which
introduced in-line strings of compile time
defined lengths as a new primitive type. We
rejected both of them for two reasons:
insufficient flexibility, and the fact that
they were based on concepts unrelated to those
of the SCB.

263

The third proposal was based on classes and a
new basic type character. There were two classes
"string descriptor" and "string", the latter
containing a character array, the former
identifying a substring of a string object and
a "scan pointer" for sequential character access,
together with various operators declared as
procedures. We felt that these constructs would
provide good flexibility and could be implemented
with reasonable execution efficiency, also on
computers without direct character accessing
capability. The price was a certain amount of
overhead in run time data structure, and a
syntactic overhead which was unacceptable.
The latter could, however, be alleviated by
defining "string descriptor" as an "in-line
object type" using operator notation for
operations like "becomes" and "equal". Tr1.le enough,
this new construct could not be defined within
the SCB, but it was consistent with our (still
evolving) plans for a "complete" SIMULA 67 with
class-like types. The new type was later called
text in order to avoid confusion with ALGOL's
String concept.

The input/output facilities were in some ways
easier to design. The proposals converged on
a hierarchy of classes corresponding to different
kinds of files. (However, some details in
the "printfile" class kept worrying the SSG
for several years.)

The first meeting of the SIMULA 67 Standards
Group was held in Oslo, February 10, 1968. The
last of a series of proposals by Myhrhaug (1968)
was presented at the meeting, together with
recommendations by the Working Group. The
proposals were approved, (SIMULA Standards
Group 1968), and the NCC was instructed to
"provide a new SIMULA 67 Common Base Definition
paper within 6 weeks". The NCC actually worked
twice as long to produce it. The first complete
and authoritative Common Base Definition is
dated May 1968, (Dahl, Myhrhaug and Nygaard 1968).

It so happened that the first batch of the new
SCB documents came out of the printing mill the
day before the 10 year anniversary conference
for ALGOL in Zurich. Myhrhaug arrived late for
the conference with 45 kg overweight baggage and
reported difficulties in passing the customs
control. The inspector had become very
suspicious when, on opening one of the books,
his eyes fell upon the following example
(ref. pages 26-27).

class hashing; virtual: procedure hash; .••

One adjustment to the old SCB, approved by the
February meeting of the SSG, deserves to be
mentioned, since it is related to basic ways
of thinking of objects, values and references.
We had discussed during the summer of 1967
whether references were so different from other
kinds of operands that they needed a special set
of operator symbols. The answer had been a tentative
"yes, perhaps", but the possible gain in clarity
had not seemed important enough to warrant the
expense. Faced with our new text type the old
question appeared in a new light. A text could
either be thought of as a string descriptor

("text reference") or as a character sequence
("text value"), and we needed some notation
for distinguishing between them. The operators
":-", "==", and "=/=" were chosen for reference
assignment and reference equality/inequality,
respectively. It was then natural to apply these
operator symbols to object references as well. A
similar distinction was made between parameter
transmission "by reference" and "by value".
This had only syntactic consequences for the
old SCB, since an object transmitted by reference
is the same as an object reference transmitted by
value.

At the beginning of 1968 we regarded the Common
Base as a statue with one leg missing. Our plan
was to "complete" the language and provide an
experimental in-house UNIVAC implementation by
extending the Common Base compiler now in
progress on our UNIVAC 1107, (Nygaard 1967).
We were now thinking in terms of class declarations
giving rise to in-line references to off-line
objects, and analogous "type" declarations giving
rise to in-line objects. (text could be seen as
a type prefixed by a class, whose objects were
references with additional descriptive information.)
Some of our views at the time are expressed in
a letter from OJD to Tony Hoare, (Dahl1968a).

We had had some correspondence with Hoare during
the preceding autumn, and through him we had
seen some of his correspondence with Niklaus Wirth.
This contact had been very stimulating and
refreshing. We invited Hoare and Wirth to a three
day meeting, February 4-6, to discuss types and
classes, (Nygaard 1968a). We also wanted to
consult them on our string handling and I/O
proposals, about to be submitted for approval by
the SSG. They kindly accepted our invitation,
and we had a series of discussions which
were very useful to us, since they Clarified
our own thoughts considerably. It turned out
that their views and ours differed so much (Wirth
1968) that we could not follow their advice in
specific matters (which implies that neither of
the two is responsible for any shortcomings of
SIMULA 67's text and I/O facilities).

One concrete result of the meeting was that the
while statement of PASCAL was included in the
Oslo compilers and later proposed as a "recommended
extension" of the SCB. It is now a part of the SCB.

The Common Base paper consumed most of our time
during the spring. From the summer of 1968 on
there were no resources for a continuation of
work on the "complete SIMULA 67". OJD moved
to the University of Oslo, KN had to concentrate
on "SIMULA politics", and the implementors
had enough problems to cope with within the
Common Base.

3.5 The Fight for the SIMULA 67 Compilers.

Fairy tales end with the heroine getting her
prince, and everybody (except the witch) living
happily ever after. As language designers we often
feel that people believe that one has "succeeded"
and that a language "exists" as soon as it is de
fined, and that the subsequent implementation is
a mere triviality, even if time consuming. The

264

implementors very often are only briefly mentioned
in a preface to some report.

In fact it is when the language is reasonably well
described and thus the implementation task defined,
that the main, tedious and frustrating part of the
struggle for a language's existence really starts.
The actual writing of compilers is one aspect of
this struggle. To obtain the resources necessary
for this work is another aspect, to establish an
organizational framework for distribution, mainte
nance, language standardization yet development,
is a third aspect. Finally, a fourth one is to
make the language known and used.

We believe that these aspects of the histories of
the various programming languages are usually
quite dramatic and very often without a happy
ending. We also suspect that this is the case even
when large, powerful organizations are involved.

In the case of SIMULA 67 very scarce resources
were at hand. The NCC is a small institute in a
small country, without a world wide organizational
network to support its activities. We are not pre
senting the true history of SIMULA 67 unless we
tell this second part of the story, at the same
time mentioning a few of those who contributed
to SIMULA 67's survival.

SIMULA I was originally only considered as a
system description and simulation language, not
as a general programming language. SIMULA I was
implemented for UNIVAC 1100 series computers,
later on also for Burroughs B5500 and URAL 16.

Our ambitions for SIMULA 67 were much higher: we
wanted SIMULA 67 to become an "existing" general
programming language, "existing" in the sense that
it was available on most of the major computer
systems, being used-over a long period of time
by a substantial number of people throughout the
world and having a significant impact upon the
development of future programming languages.
We felt, of course, that SIMULA 67 was worth
fighting for. What were our resources?

In 1968 NCC entered a difficult reorganization
period. (The NCC is described in chapter 1). From
1963 on NCC had been operating a UNIVAC 1107 and
acted also as a computer service bureau. Now the
1107 was sold, and NCC was itself to become a user
of other organisations' computers. A number of
employees associated with our function as supplier
of computing power left the institute. Even if Nce
now was supposed to focus upon research and deve
lopment work, large new long-range projects
were not particularly popular in this turbulent
period.

AS mentioned earlier, the SIMULA I ideas were not
received with enthusiasm in NCC's environment.
The reception of SIMULA I in the professional
world had made it difficult to mainta.in that the
language was a poor one and its designers incompe
tent. This time it was stated (without any know
ledge of the new language) that

1. Obviously SIMULA 67 was a wonderful language,
but

2. Programming languages would have an average
life time of about five years. Consequently,
SIMULA 67 should not be implemented by NCC
unless we could be certain of cQvering the
total expenses by sales income over a five
year period.

We were convinced that the language situation would
be different in the coming decade from what it had
been in the previous one. Neither users nor com
puter manufacturers would be willing to accept a
stream of new languages. Also, in the research
world it would be demanded that what had been
achieved in the sixties should now be consolidated
and evaluated through practical use of the most
advanced high level languages which had been
developed.

We felt that in the next decade a large number of
languages would cease to "exist", and that only
about a dozen would survive: COBOL and FORTRAN
because of conservatism and the colossal invest
ment in programs written in these languages, PL/I
because of IBM support, and then, at a lower scale
of usage, some ten other languages. We wanted
SIMULA 67 to be in that group.

SIMULA I had been developed during NCC's expan
sion years in the early sixties, within KN's
research department, established in 1963 and
named the "Department for Special Projects". This
department consisted in 1967 of 6 persons, the
total staff of NCC being about 120 persons at
that time.

Even if KN had a decisive influence on the work
in the department, it was not possible to allocate
more than at most four persons to SIMULA 67 imple
mentations, and not possible to get additional
resources from other departments unless such
implementations were set up as projects intended
to be profitable from a strictly economic point
of view.

Another argument against SIMULA 67 implementation
projects was a valid one, but greatly exaggerated:
A modern, commercial compiler would require invest
ment on a much greater scale than the SIMULA I com
piler, and we were told that IBM was using about
five hundred manyears on their PL/l effort.

We realized that our objectives for SIMULA 67 would
require much larger reSOurces than SIMULA I, but
could not accept that this should rule out SIMULA
67. (We often quoted the story about the two
business men debating whether to locate an impor
tant software project in the us or in Europe, the
question being settled by the remark: "We have to
locate the project in EUrope, since in the US it is
not possible to put together a sufficiently small
team".)

To sum up: our resources in manpower and money
were very modest, and we had to provide economic
arguments for the implementations of SIMULA 67.

We had other resources, however: the reputation of
SIMULA I, and the fact that SIMULA was linked to
ALGOL 60. Simulation was becoming more and more
important, and in Europe people started asking for
SIMULA when computer purchase contracts were nego
tiated.

265

We had defined our objective as making SIMULA 67
a member of the small group of programming langua
ges which in ten year's time would still "exist"
in the sense defined earlier. Obviously, we had
very great odds against us, and we had to plan
very carefully. Some aspects of our strategy and
tactics will be described below.

In practice, the language could be regarded as
"existing" only if implementations of a high
standard were available on the most important
computers. In our environment that implied giving
top priority to implementations on Control Data,
IBM and UNIVAC computers.

By "high standard" we understood:

1.

2.

3.

Compilation and run time execution speeds
comparable with the most efficient ALGOL 60
compilers.

Availability of'comprehensive and well written
documentation and educational material.

The existence and effective operation of
distribution and maintenance organizations
for the compilers.

We also felt, based upon the fate of ALGOL 60,
that the implementations should be compatible as
far as possible, and continue to be so. This im
plied:

1. String handling and input/output facilities
should be defined as a part of SIMULA 67.

2. The establishment of an organization which
had the exclusive power to state what was
"legal SIMULA 67" and adopt changes to that
SIMULA 67. This organization had to be set up
to provide conservatism, but also such that
its members had genuine common interests in
the spreading and development of the language.

Compatibility considerations also were important
in other respects. Should SIMULA 67 contain ALGOL
60 as a subset? We disagreed with some basic design
features of ALGOL 68, and compatibility with that
language was ruled out. We also doubted that ALGOL
68 would be accepted by a large proportion of the
ALGOL 60 user community and we felt that we could
improve certain features of ALGOL 60 in SIMULA 67.

On the other hand, ALGOL 60 is a beautiful language
and the advantages of staying compatible were in
deed very great. We decided that the possibility of
running ALGOL 60 programs on SIMULA 67 compilers
and of "growing" from ALGOL 60 to SIMULA 67 would
attract many ALGOL 60 users. We needed their sup
port, even with the limited size of the ALGOL
community, and made only small modifications in
the ALGOL 60 part of SIMULA 67.

A minor, but not unimportant point was the name of
our new language. SIMULA is an abbreviation of
"simulation language", and very obviously so.
The new language was a general, high level program
ming language and a system description language.
In the short run the language would benefit from
a name presenting it as an improved version of the
simulation language SIMULA. In the long run the
SIMULA name possibly might slow down the language's

ac(:eptance as a general purpose language. We deci
ded that we were forced to give priority to the
short term advantages and named the language
snmLA 67. Today the language suffers from the
prE~dicted long range effects.

In the spring of 1967, we did the basic groundwork
in the design of the SIMULA 67 run time system
features. At the same time Control Data decided
that they wanted SIMULA implemented both on their
3000 and 6000 series of computers because of cus
tomer demands. Among the customers were the Kjeller
Computer Installation (KCIN, serving the Norwegian
Defence Research Establishment (NDRE» and the
University of Oslo.

Negotiations between NCC and Control Data (acting
through Control Data Norway) were started on March
1, 1967 and a contract was signed on May 23, 1967
(Agreement 1967). According to this contract and
discussions with Control Data:

1.

2.

3 •

4 •

Control Data intended to implement SIMULA 67.
The 6000 series compiler would be implemented
by Control Data, Europe. The 3000 series
compiler would be implemented by KCIN.

At the insistence of Svein A. 0vergaard,
director of KC IN , a firm "SIMULA 67 Common
Base" language definition should specify what
was to be implemented. A SIMULA Common Base
Conference should meet "within the first ten
days of June, 1967".

A new organization named the "SIMULA 67
Standards Group" (SSG) was to be established.
Eligible for membership of the SSG would be
organizations which were responsible for
development and/or maintenance of SIMULA 67
compilers. NCC would be ex officio member and
have the right to veto decisions in the SSG.
Control Data should apply for membership.
(The statutes of SSG are found in (statutes
1967» •

NCC would provide SIMULA 67 implementation
guidance to Control Data.

This was the initial platform for the SIMULA 67
implementation efforts. In June the University of
Oslo, through its Computer Department headed by
Per Ofstad, joined the project. The 3000 series
work was carried out in a cooperation between KCIN
("upper" 3000 series) and the University ("lower"
3000 series).

In order to make the initial and basic definition
of SIMULA 67, named the "SIMULA 67 Common Base
Language", and to set up the SSG, the "SIMULA 67
Common Base Conference" convened at the NCC in the
period June 5-9. Present at the conference were
representatives from Control Data, KCIN, people
from the University of Oslo, and some individual
computer scientists invited by the NCC.

The conference succeeded in making the necessary
basic decisions, deferred certain decisions for
further study, and established the SSG, with
Control Data and NCC as the initial members, KN
being the first chairman. (Today the SSG has 10
member organizations representing active implemen
tations). Some of the decisions at the conference

266

were rather important and have been discussed
earlier in this paper.

The real freezing of SIMULA 67 happened during the
autumn of 1967. Formally the freezing was achieved
by decisions made at the SSG meeting in Oslo on
February 10, 1968 (see section 3.4).

We also planned from the outset that an "Association
of SIMULA Users" (ASU) should be the framework for
contact between the end users of SIMULA and for
channelling their demands and complaints to the SSG
and its members (having compiler maintenance respon
sibility). The ASU was established five years later,
in september 1972 with Robin Hills being Chairman
the first two years. ASU has since then had annual
conferences and a series of workshops on a wide
range of issues. (The first conference in Oslo, the
second of course in Monte Carlo.) The present active
membership is approximately 500.

The last element of the organizational strategy was
the SIMULA Newsletter. After a few abortive attempts
(NCC 1968b) the Newsletter has been published regu
larly by the NCC since May 1972 and is now distri
buted to approximately 1000 subscribers.

The reasons for the delays in setting up the ASU
and the Newsletter were simple: we had to economize
carefully with our scarce manpower resources and we
did not get SIMULA users in any quantity until 1971.

In the beginning of 1968 the SIMULA 67 Common Base
Language was quite well defined and the initial
stage of the organizational plan in operation.
Later on that year OJD beCame the first professor
of informatics at the University of Oslo. He parti
Cipated in the Control Data 3000 series implemen
tations, but was mainly absorbed by the task of
building up informatics at the University of Oslo.

Also, in the beginning of 1968, the "battle for the
compilers" started and lasted till the summer of
1969 when it was finally decided that NCC should
implement and market SIMULA 67 on the IBM 360/370
computers and complete and market SIMUIA 67 for the
UNIVAC 1100 series computers.

The Control Data projects started in 1967 and were
carried out in Paris under the direction of Jacques
Newey (6000 series). In Norway the two 3000 series
implementations were run as a joint KCIN/University
project under the direction of Per Martin Kjeldaas
of KCIN. There was some contact ,between the Oslo
and Paris teams. In Oslo the work on the lower
3000 series compiler was pushed ahead, since the
test facilities were better at the University.
Both compilers were, however, ready in the spring
of 1969 and turned out to satisfy the "high standard"
criteria for efficiency stated earlier.

The Norwegian teams had some financial support from
Control Data Europe. In return Control Data Europe
obtained the right to use and distribute the 3000
series compilers. The University and KCIN had
maintenance contracts for their respective compilers.

The 3000 series team directed by Kjeldaas consisted
of Dag Belsnes, Ole Johnny Dahle, 0ivi.nd Hjartl!)y,
0ystein Hope, Ole Jarl Kvammen, Hans Christian Lind,
Around Lunde, Terje Noodt, Tore Pettersen and Arne
Wang.

At the NCC the situation was more complex.

When the class/subclass concepts were invented,
SIMULA 67 emerged and the "SIMULA 11" ideas were
dropped. Our work in the Department for Special
Projects in 1967 and early 1968 was, in addition
to the language definition, mainly directed towards
the development of the basic design of SIMULA 67
compilers. We were always running implementation
studies in parallel with the language design. A
concept was not incorporated in the language until
we had a sensible way of implementing it. one of
the few exceptions was the "type proposal" (section
3.3). A result of this work was the "SIMULA 67
Implementation Guide", (Dahl and Myhrhaug 1969).
This report contained the results of a quite sub
stantial investment and was regarded as a commercial
secret until it was released in 1971. The report
was sold as a part of NCC's consultancy contracts
with SIMULA 67 implementors. (See KN's letter to
Hoare, then working at Elliott-Automation Computers
Limited, dated November 3, 1967 for conditions off
ered, (Nygaard 1967)).

Bj~rn Myhrhaug, Sigurd Kubosch, Dag Belsnes and OJD
were active in these deSign studies. Gradually
Sigurd Kubosch (orginally from Germany) became more
and more involved with the UNIVAC 1100 series com
piler, later on joined by Ron Kerr (from Scotland),
and they did the main bulk of work on that imple
mentation.

Kubosch and Kerr worked mostly alone and without
the major support which the IBM compiler project
later received. Their task was made even more diffi
cult because NCC changed from using UNIVAC 1107
(with EXEC 11) to UNIVAC 1108 (with EXEC 8) in the

middle of the project. A first, rather restricted
version was ready in the summer of 1969, being
released to UNIVAC, st. Paul for evaluation pur
poses and to the Technical University in Trondheim.
The compiler was gradually extended and improved.
When it was clear that we had a marketable product,
and that we had to market it ourselves, we were
able to allocate Kubosch and Kerr to write compre
hensive documentation. There had been no resources
for that earlier. The first commercial delivery of
the UNIVAC 1100 series SIMULA System took place in
March 1971 to the University of Karlsruhe, W.
Germany.

In the spring of 1968 it was made clear to us that
NCC could only support the production of UNIVAC and
IBM SIMULA 67 compilers if we could establish a
financial arrangement which secured NCC the same
payoff on these products as on our strictly commer
cial projects. Preferably, NCC should not run any
economic risk.

The financial pressure was brought to bear upon
SIMULA 67 at a time when NCC, as mentioned earlier,
had large reorganizational problems. From a narrow
SIMULA 67 point of view this was a lucky circum
stance, since the insistent pressure was never
followed up by administrative decisions. Time passed
by and in the summer of 1969 the work on the UNIVAC
compiler and the support for the IBM compiler had
developed to a stage beyond "the point of no return".

In the autumm of 1968 Harald Omdal was employed by
NCC to assist KN in finding suitable financial
arrangements for the two compiler projects. Omdal,

267

former director of the Joint Computing Center of
the four largest Norwegian commercial banks, was
working as a private consultant. After initial work
by Omdal on designing alternatives, he and KN visi
ted in the spring of 1969 a number of large Scandi
navian companies to obtain their financial partner
ship in the production of an IBM 360/370 compiler.
We got a pleasant reception, interest in later use
of SIMULA 67, and some, but not many positive res
ponses.

We were not too surprised. Why should these compa
nies pay in advance for something they could get
without risk later? The whole idea of this type of
project support had to be abandoned.

We also contacted IBM in Norway and Sweden. Both
IBM and we were rather careful in these discussions.
IBM wanted to support advanced national programming
research in Scandinavia. To accept SIMULA 67 as an
IBM-supported language would, however, be a major
decision with far-reaching economic implications.
Such a decision could only be made at IBM headquar
ters in the US. On our side, we were afraid of giving
IBM control over the 360/370 compiler because of the
risk of the language and its compiler being put on
the shelf.

The results of these contacts were in the end posi
tive and very important. IBM agreed to support the
project by granting NCC a very substantial amount
of computer time for developing and testing the
compiler (40 hours on a 360/75 in Stockholm and
200 hours on a 360/40 in Oslo).

The event which finally triggered off the IBM com
piler project occurred in the summer of 1969: the
Swedish Agency for Administrative Development
(Statskontoret) decided, with the support of the
Swedish Defence Research Establishment, to partici
pate in the project through two highly qualified
programmers. Jacob Palme played an important role
in this decision.

The IBM 360/370 SIMULA 67 compiler project was
headed by Bj~rn Myhrhaug, and the team consisted of
Lars Enderin and Stefan Arnborg (from the Swedish
Defence Research Establishment), and the NCC em
ployees Francis Stevenson, Paul Wynn, Graham
Birtwistle (all from the United Kingdom) and Karel
Babcicky (from Czechoslovakia). When Myhrhaug got
leave of absence, Babcicky was project leader for
a period. Myhrhaug also was coordinator for both
the UNIVAC and IBM projects, being succeeded by
Birtwistle.

The first public release of the IBM compiler took
place in May 1972 (to the governmental data center
in Stockholm) .

UN I VAC had mixed reactions towards SIMULA 67. From
a commercial point of view SIMULA I was a useful
but not very important part of their software
library. They felt no market demand for an improved
language and, in particular, no reason to share
SIMULA with other manufacturers From a professional
point of view, however, many within UNIVAC were ac
tively interested in getting SIMULA 67. A long
series of discussions and contract negotations with
various UNIVAC agencies followed, but a contract
was never signed.

We think it can be safely said that the UNIVAC 1100
series and the IBM 360/370 series compilers both
sa.tisfy the criteria for "high standard" described
ea.rlier. It is interesting to observe that they were
developed in two completely different ways. The two
ma.n UNIVAC 1100-series compiler team worked their
wa.y with little support, using a long time, and were
asked to provide comprehensive documentation at a
late stage. The seven man IBM 360/370-series com
piler team worked in a well supported and carefully
planned project, documenting as they went along.

The end result was that both compilers proved effi
cient and successful and both consumed approximately
15 man years. Our initial estimate had been 8-10 man
years, assuming no suitable ALGOL 60 compiler avai
lable (Nygaard 1967). We underestimated to some
extent the design and programming work and to a
great extent the documentation effort.

At. the NCC a team of 4 persons, headed by Karel
Ba.bcicky, is now constantly employed in handling
our SIMULA activities. For many years Eileen
Schreiner has been our "SIMULA secretary" keeping
all threads together and serving on the board of
the ASU.

We have mentioned that the attitude towards SIMULA
I and SIMULA 67 was rather negative in certain parts
of NCC's environment. In other parts of that en
vironment, among professional people, the attitude
has been mainly positive. within the NCC itself,
SIMULA has had wholehearted and generous support.
The period in which (in our opinion) too shortsigh
ted economic considerations threatened the develop
ment was quite brief, atypical and had its reasons.
Anyhow, an institute organized as the NCC is forced
to take economics into account, and the compiler
projects represented in the years 1968-71 a signi
ficant economic burden for the institute.

Has SIMULA 67 then been an economic success or a
failure for the NCC? That is a difficult question
to answer, since it is not easy to measure the eco
nomic side effects of the SIMULA efforts. The ex
perience gained has been the platform for later,
straightforwardly profitable jobs,e.g. other langu
age projects. SIMULA itself has made it possible to
do jobs within operational research and data proces
sing which otherwise would have been much more costly
or beyond our capabilities. The international accep
tance of SIMULA 67 has contributed to the Institute's
reputation. In direct money terms, SIMULA 67 has
not produced a profit. On the other hand, distri
buted over the eleven years since 1967, serious
losses have not been incurred.

Today it is generally accepted that SIMULA has been
a worth while effort, both for NCC and its environ
ment. We have since then, in 1973-75, developed a
new type of language - a pure system description
language - called DELTA, (Holb~k-Hanssen, Handlykken
and Nygaard 1975), starting from the SIMULA platform.
From DELTA we are now deriving a new systems pro
gramming language, called BETA, (Kristensen, Madsen
and Nygaard 1977) in cooperation with research
workers from the Universities in Arhus and Alborg
in Denmark. Whereas DELTA cannot be compiled, BETA
of course can. Will the NCC embark upon the imple
mentation of BETA, having had the SIMULA experience?
This remains to be seen.

268

4. Concluding Remarks

The organizers of this conference have suggested
that we should discuss our own languages' "impli
cations for current and future languages". We find
this difficult because of our personal involvement
and think that other research workers are better
judges on this subject. However, we are in the
lucky situation that we may refer to Peter Wegner's
recent article, "Programming Languages - The first
25 years" (Wegner 1976), which contains many com
ments on SIMULA 67.

Instead, we would like to conclude our paper with
some reflections on our experiences from the pro
cess of developing a programming language.

In the spring of 1967 a new employee at the NCC in
a very shocked voice told the switchboard operator:
"Two men are fighting violently in front of the
blackboard in the upstairs corridor. What shall we
do?" The operator came out of her office, listened
for a few seconds and then said: "Relax, it's only
Dahl and Nygaard discussing SIMULA".

The story is true. The SIMULA 67 language was the
outcome of ten months of an almost continuous
sequence of battles and cooperation in front of
that blackboard - interrupted by intervals when we
worked in our neighbouring offices (communicating
by shouting through the wall if necessary) or at
home. (The people arranging this conference asked
us to provide material relating to the development
of our respective languages. We felt that the best
thing we could have done was to bring along that
blackboard. But we did not know for certain whether
we would be flying a wide-body aircraft.)

In some research teams a new idea is treated with
loving care: "How interesting!", "Beautiful!".
This was not the case in the SIMULA development.
When one of us announced that he had a new idea,
the other would brighten up and do his best to kill
it off. Assuming that the person who got the idea
is willing to fight, this is a far better mode of
work than the mode of mutual admiration. We think
it was useful for us, and we succeeded in discarding
a very large number of proposals.

The class/subclass concept was perhaps the only one
which was immediately accepted, whereas the virtual
concept perhaps was the one which went through the
longest sequence of initial rejections before it
finally was given a definition acceptable to both
of us.

When we started working together, we had quite dif
ferent backgrounds. KN had quit programming in 1954,
at a time when an essential aspect of the art was
to program an algorithm with the minimum number of
machine code instructions. His reasoning was always
related to suitable language mechanisms for the des
cription of systems in the real, physical world.
OJD had been working on typical programming tasks
and programming language design and implementation,
with little experience from the problem area of
operational research.

In the initial stages of our cooperation we had
communication problems. Gradually the area of com
mon knowledge and understanding increased. We

believe that our differences turned out to be a
useful resource in our work, since each of us
developed his own "role" in the team. In this way
we were more likely to create ideas together which
none of us would have created alone. We have later
on both been working in close-knit teams with other
people and we have found that we have had to develop
other roles in these teams, the resource situation
not being the same.

Sometimes we are asked questions like: "Who
invented the virtual mechanism?" or "Who got the
prefix idea?" Even if an answer could be given it
would only tell who brought an idea forward the
last of a long sequence of steps, and thus be of
little interest. We tried once (when OJD was
applying for his current position at the University
of Oslo) to sort out at least certain rough areas
of "ownership" in our relations to SIMULA I and
SIMULA 67. When we found that each of us owned one
half of the "reactivation point", we discontinued
the effort.

We have been criticized for "dropping" SIMULA 67
after it had been developed. It is said that other
people, e.g. Tony Hoare, Jean Ichbiah, Don Knuth,
Jacob Palme, have done the real job of promoting
the language. This is partially true, and we are
grateful for their interest.

One reason for the increased use of SIMULA 67 in
recent years, especially within the United States,
is undoubtedly the very successful DEC 10 imple
mentation produced by a Swedish team in 1973-74.
Arnborg and Enderin, who also took part in the IBM
implementation, were key members of that group.
Ingrid Wennerstrom was another important member.
Jacob Palme again played a decisive role in initi
ating the work.

OJD's work on structured programming has been based
on a SIMULA 67 platform, and has contributed to
making SIMULA 67 known in the scientific community.
Graham Birtwistle took the main burden in writing
a comprehensive SIMULA 67 textbook (Birtwistle et
al1973).

NCC and its staff has invested a substantial effort
in promoting SIMULA 67 in many other ways: courses
in many countries, publication of the SIMULA News
letter, contacts with users in general. It was
SIMULA 67's simulation capability which made it
possible to get support for the implementation of
the first set of compilers and to sell these com
pilers to customers. If we had used our very scarce
resources for writing papers and as travelling
lecturers, SIMULA 67 might have been a paper langu
age today, not a living one with an active user
community.

References.

The letter P,D or C following each reference should
be understood as follows: P-publication, D-document,
C-correspondence.

Agreement 1963 June 1. Agreement made 1st day of
June by and between Sperry Rand Corporation
(UNIVAC) and the Royal Norwegian Council for
Scientific and Industrial Research (by NCC). (D).

269

Agreement 1967. Agreement on Implementation of the
SIMULA 67 language between Control Data A/S
Norway and the Norwegian Computing Center,
Oslo May 23, 1967. NCC Doc. (D).

Agreement 1969 September. Draft outline for a
SIMULA 67 agreement between UNIVAC and the
Norwegian Computing Center. (D).

Birtwistle, G.M., et aI, 1973. SIMULA BEGIN,
Studentlitteratur, Lund, Sweden and AUERBACH
Publ. Inc., Philadelphia, Pa. (P).

Blunden, G.P. 1968. Implicit interaction in
Process Models. In Buxton, J.N., ed. Simu
lation Programming Languages, pp.283-2~
Amsterdam: North-Holland Publ. Comp. (P).

Buxton, J.N., ed. 1968. Simulation Programming
Languages. Proceedings of the IFIP Working
Conference on Simulation Programming Languages
Oslo 1967. Amsterdam: North-Holland Publ.
Comp. (P).

and Laski, J.G. 1962. Control and
Simulation Language. Com,Euter Journal 5 (5).
(P) •

Christopher, C.A. 1964 February 28. Letter to
Leif K. Olaussen, Director NCC. (C) .

____ ~~---------. 1965 December 15. Letter to Leif
Olaussen, Director, NCC. (C).

Clark, I.A. 1966 Jauary 27. Letter to Leif
Olaussen, Director, NCC. (C).

___________ • 1967 January 24. Letter to Kristen
Nygaard, NCC. (C).

Dahl, O-J. 1963 ~ovember. The SIMULA Storage
Allocation Scheme, NCC Doc. 162. (D).

_________ . 1964 February/March. The SIMULA Data
Structures. NCC Doc. (D).

_________ • 1968 January 24. Letter to C.A.R.
Hoare, Elliott-Automation Computers Ltd.,
Herts, England. (C).

__________ . 1968. Discrete Event Simulation
Languages. In Genuys, F., ed. Programming
Languages, pp. 349-395. London and New York:
Academic Press. (p).

_________ . 1970. DecompOSition and Classification in
programming languages. In Linguaggi nella
societa e nella tecnica. Milano: Edizioni di
Comunita. (P).

__________ . and Hoare, C.A.R. 1972. Hierarchical
Program Structures. In Dahl, O-J., Dijkstra,
E.W., and Hoare, C.A.R. Structured Program
ming, pp.175-220. London and New York:
Academic Press. (p).

__________ . and Myhrhaug, B. 1969 June.
SIMULA 67 Implementation Guide. NCC Publ.
No. S-9. (D).

__________ . and Nygaard, K. 1963 May. Preliminary
Presentation of the SIMULA Language (as of
May 18th 1963) and some examples of network
descriptions, NCC Doc. (D).

__________ • and Nygaard, K. 1964 March. THE SIMULA
LANGUAGE. Specifications 17 March 1964.
NCC Doc. (D).

. _______ . and Nygaard, K. 1964 July.
The SIMULA Project. Technical Progress Report
1. July 1964. NCC Doc. (D).

______ . and Nygaard, K. 1965 May. -SIMULA-
A language for programming and description of
discrete event systems. Introduction and
user's manual. NCC Publ. No. 11. (D).

______ • and Nygaard K. 1966 September. SIMU~

an ALGOL-based Simulation Language.
CACM 9 (9): 671-678. (P).

______ ~-. and Nygaard, K. 1967 March.
Class and subclass declaration. NCC document.
(As presented at the IFIP Working Conference
on Simulation Programming Languages, Oplo
May 1967). (D).

_________ . and Nygaard, K. 1967 May.
Common Base Proposal. NCC. Doc.

SIMULA 67
(D) •

__________ .• and Nygaard, K. 1967 June. Proposal for
Consideration by the SIMULA 67 Common Base
Conference, June 1967. (D).

__________ • and Nygaard, K. 1967 June.
Common Base Definition. NCC Doc.

SIMULA 67
(D) •

______ ~--. and Nygaard, K. 1968. Class and sub
class declarations. In Buxton, J.N., ed.,
Simulation Programming Languages, pp.158-171.
Amst&rdam: North-Holland Publ. Comp. 1968.
(P) •

Myhrhaug, B. and Nygaard, K. 1966.
SIMULA. Simula Tracing System. NCC Doc. (D).

_________ • Myhrhaug, B. and Nygaard, K. 1968 May.
The SIMULA 67 Common Base Language.
NCC Publ. S-2. (D).

. ________ . Myhrhaug, B. and Nygaard, K. 1968 Oct.
Some Uses of the External Class Concept in
SIMULA 67. (Presented by P.M. Kjeldaas at the
NATO sponsored conference on Software Engin
eering, Garmisch, Germany, 7th-11th October
1968;) referred in the conference report
Software Engineering 1968, ed.: Naur, P. and
Randell, B., p. 157) NCC Doc. (D).

__________ • Myhrhaug, Band Nygaard, K. 1970 October.
Common Base Language. NCC Publ. No. S-22.
(Revised edition of S-2). (P).

Dijkstra, E.W. 1968 May. The Structure of THE
Multiprogramming System. CACM 11(5). (P).

Garwick, J.V. 1968. Do we need all these languages?
In Buxton, J.N., ed., Simulation Programming
Languages, pp.143-154. Amsterdam: North
Holland Publ. Comp. (P).

270

Gorchow, N. 1966 January 10. Telegram to Leif
Olaussen, NCC. (C).

Gordon, G. 1962 September. A General Purpose
Systems Simulator. IBM Systems Journal. 1.(P).

Hegna, H., Lund, O.J., and Nygaard, K. 1968 June.
User's experience with the SIMULA language.
NCC Doc. (D) .

Hoare, C.A.R. 1965 November. Record Handling.
In ALGOL Bulletin No. 21. (P).

_____________ . 1966 May. Further Thoughts on
Record Handling. In ALGOL Bulletin No. 23. (P).

______________ . 1968. Record Handling. In Genuys, F.
ed. Programming Languages, pp.291-347. London
and New York: Academic Press. (P).

____ ~------. 1972.
Representations.
(P) •

Proof of Correctness of Data
Acta Informatica 1:271-281.

______________ . 1974 October. Monitors: an opera
ting system structuring concept. CACM 17(10):
548-557. (P).

Holb~k-Hansen, E., Handlykken, P., and Nygaard, K.
1975 September. System Description and the
DELTA Language. DELTA Project Report No. 4,
Nce Publ. No. 523. Oslo: Norwegian Computing
Center. (P).

Ichbiah, J.D. and Morse, S.P. 1969 December.
General Concepts of the SIMULA 67 Programming
Language. DR. SA. 69. 132 ND. Compagnie
Internationale pour l'Informatique. (p).

Jonassen, A. and Dahl, O-J. 1975.
Algorithm for Priority Queue
BIT 15(4): 409-422. (p).

Analysis of an
Administration.

Knuth, D.E., and McNeley, J.L. 1964 August. SOL -
A Symbolic Language for General Purpose Simu
lation. IEEE Transactions on Electronic
Computers. ED-13(4): 401-408. (p).

____ ~~--~~--~--------__ . 1964 August.
A Formal Definition of SOL, IEEE Transactions
on Electronic Computers, ED-13(4) 409-414. (p)

Kristensen, B.B., Madsen, O.L., and Nygaard, K.
1977 September. BETA Language Development.
Survey Report 1. November 1976. (Revised
Version, September 1977). RECAU-76-77, DAIMI
PB-65, NCC Publication No. 559. (P).

Markowitz, H.M., Hausner, B. and Karr, H.W. 1963.
SIMSCRIPT, A Simulation Programming Language.
Englewood Cliffs, N.J.: Prentice Hall. (P).

McNeley, J.L. 1968. Compound declarations. In
Buxton, J.N.,ed. Simulation Program Languages,
pp.292-303. Amsterdam: North-Holland Publ.
Comp. (P).

Murphy, J.S. 1968 July 10. Letter to Kristen
Nygaard, NCC. (C).

Myhrhaug, B. 1965.
Working Paper.

Sequencing Set Efficiency.
(D) •

1967 April 25. Letter to I. A. Clark,
Systems Programming, UNIVAC, Minnesota. (C).

1967 October. A note on string
handling facilities in SIMULA 67 Common Base.
NCC Publ. No. D24. (D).

_____________ . 1968 January. Proposal for string
and input/output definition in SIMULA 67
Common Base. Preliminary presentation.
NCC Publ. No. 212. (D).

Naur, P. et al. 1960 May. ALGOL 60 Report.
CACM 3 (5). (P).

1963 January. Revised ALGOL Report.
CACM 6(1): 1-17. (P).

NCC 1967 June. Recommendations from the SIMULA 67
Common Base Conference, NCC, June 1967. (D).

NCC 1968. 1107/1108 SIMULA 67 Project. Internal
Information No. 1, July 22, 1968. (D).

NCC 1968 July 26. SIMULA Newsletter No. 1.

Nickitas, J.W. 1965 September 13. Letter to
Kristen Nygaard, NCC. (C).

(D) •

Nygaard, K. 1962 January 5. Letter to Charles
Salzmann, CFRO, Paris. (C).

__________ . 1962 September 24. Diskret-begivenhets
nettverk. (Discrete event networks) Note,
in Norwegian. (D).

___________ . 1963. SIMULA, An Extension of ALGOL
to the Description of Discrete Event Networks.
In Proceedings, IFIP Congress 62, pp.520-522.
North-Holland Publ. Comp. (P).

__________ . 1963 April 17. Letter to C. A.
Christopher, Director of Procurement, UNIVAC
(C) •

___________ . 1963 May 18. Letter to A. M. Paster,
Manager Systems Research, UNIVAC, New York.
(C) •

___________ . 1963. A status report on SIMULA - a
language for the description of discrete
event networks. In Proceedings of the Third
International Conference on Operational
Research, pp.825-831. London: English
Universities Press Ltd. (P).

___________ . 1963 September 19. 0pparbeidelse av
kompetanse innenfor Real-time Systemer.
(Building up competence on real-time systems).
Note, in Norwegian. (D).

___________ . 1965 August 15. The Software Contract
between UNIVAC and the Norwegian Computing
Cent:er. NCC Doc. (D).

___________ . 1965. Report on the use of SIMULA up
to December 1965. Nec Doc. (D).

27]

___________ . 1966 February 17. Letter to
S. M. Haffter, UNIVAC Sperry Rand Corporation,
Lausanne. (C).

__________ . 1967 November 3. Letter to C.A.R.
Hoare, Elliott-Automation Computers Ltd.,
Herts., England. (C).

1968 January 29. Letter to Niklaus
Wi~th, Rechenzentrum der Universitat, Zurich.
(C) •

__________ . 1968 April 2. En redegj~relse for
samarbeidet mellom Det russiske vitenskaps
akademi og No~sk Regnesentral om bruk av
programmeringsspraket SIMULA i Sovjet. (An
account of the cooperation between the Russian
Academy of Science and the Norwegian Computing
Center on the use in the Soviet Union of the
programming language SIMULA). Note, in
Norwegian. (D).

___________ . 1968 September. Oversikt over NR's
SIMULA-engasjement. (Survey of NCC's com
mitment to SIMULA). Note, in Norwegian. (D) .

___________ . 1968 September. Markedsf~ring av
SIMULA 67. (Marketing of SIMULA 67). Note,
in Norwegian. (D).

__________ • 1969 September 26. Letter to Peter
Weil, Manager, Contracts and PriCing, UNIVAG,
England. (C).

__________ . and Dahl, O-J. 1965. SIMULA - a
language for describing discrete event systems.
In Proceedings of IFIP Congress 65. Vol 2,
pp. 554-555. Washington, D.C. and London:
Spartan Books and MacMillan and Co. (P).

Palme, J. 1968. A comparison between SIMULA and
FORTRAN. BIT 8: 203-209. (P).

Paster, A.M. 1962 October 12. Letter to Kristen
Nygaard, NeC. (C).

Reitan, B. 1969 September 4. Letter to Kristen
Nygaard, Nce. (C).

Roach, 1963 July 3. Telegram to Kristen Nygaard,
Nec. (C).

Ross, D.T., and Rodriguez, J.E. 1963. Theoretical
Foundations for the Computer-aided Design
System. In Proceedings of the SJCC, p.305. (P).

SIMULA Standards Group 1968. Report from the
meeting of the SIMULA Standards Group, held
in Oslo, Norway on February 10th 1968. (D).

Statutes 1967 May 23.
Standards Group.

Statutes for the SIMULA
Nec Doc. (D).

Stevenson, F. 1967 November. LOGIC, A computer
program for simulation of digital logic net
works. Nec Doc. (D).

Tocher, K.D. 1963. The Art of Simulation. The
English Universities Press Ltd. (P).

Wegner, P. 1976 December. Progranuning Languages -
The first 25 years. IEEE Transactions on
computers C-25(12): pp.1207-1225. (P).

Wanq, A., and Dahl, O-J. 1971. Coroutine
Sequencing in a Block Structured Environment.
BIT 11: 425-449. (P).

Wei:~enbaum, J. 1962 March. Knotted List Structures.
CACM 5(3): 161-165. (P).

Wirt:h, N. 1968 February 14. Letter to Kristen
Nygaard, NCC. (C).

272

